{"title":"金属-烷硫-金属结中用于电子输运的分子链对链隧道和纳米阱器件","authors":"Hyunwook Song, N. Choi, Hyoyoung Lee, Takhee Lee","doi":"10.1109/NMDC.2006.4388765","DOIUrl":null,"url":null,"abstract":"Electronic transport in metal-alkanethiol-metal junctions is investigated. Using conducting atomic force microscopy we study molecular chain-to-chain tunneling which exhibits molecular tilt dependent intermolecular transport. And molecular devices with nanometer-scale junction area are fabricated and characterized. To clarify the molecular conduction mechanism, temperature-variable current-voltage measurements are performed.","PeriodicalId":200163,"journal":{"name":"2006 IEEE Nanotechnology Materials and Devices Conference","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular chain-to-chain tunneling and nanowell devices for electronic transport studies in metal- alkanethiol-metal junctions\",\"authors\":\"Hyunwook Song, N. Choi, Hyoyoung Lee, Takhee Lee\",\"doi\":\"10.1109/NMDC.2006.4388765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic transport in metal-alkanethiol-metal junctions is investigated. Using conducting atomic force microscopy we study molecular chain-to-chain tunneling which exhibits molecular tilt dependent intermolecular transport. And molecular devices with nanometer-scale junction area are fabricated and characterized. To clarify the molecular conduction mechanism, temperature-variable current-voltage measurements are performed.\",\"PeriodicalId\":200163,\"journal\":{\"name\":\"2006 IEEE Nanotechnology Materials and Devices Conference\",\"volume\":\"5 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Nanotechnology Materials and Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC.2006.4388765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nanotechnology Materials and Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2006.4388765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular chain-to-chain tunneling and nanowell devices for electronic transport studies in metal- alkanethiol-metal junctions
Electronic transport in metal-alkanethiol-metal junctions is investigated. Using conducting atomic force microscopy we study molecular chain-to-chain tunneling which exhibits molecular tilt dependent intermolecular transport. And molecular devices with nanometer-scale junction area are fabricated and characterized. To clarify the molecular conduction mechanism, temperature-variable current-voltage measurements are performed.