相似系数在社交圈匹配中的适用性

A. Korepanova, V. Oliseenko, M. Abramov
{"title":"相似系数在社交圈匹配中的适用性","authors":"A. Korepanova, V. Oliseenko, M. Abramov","doi":"10.1109/SCM50615.2020.9198782","DOIUrl":null,"url":null,"abstract":"This study focuses on the comparison and selection of the similarity coefficient for comparing social circles of users. Comparison of the social environment is used in comparing profiles in various social networking cites and identifying those that belong to one user. Six similarity coefficients are compared using machine learning methods and mathematical statistics. The selected coefficient will allow us to more accurately compare social circles of users and increase efficiency of the binary classifier (logistic regression) determining pair of profiles in various social networking cite belonging to one user. In addition, results of this study can be used in the analysis of social networking cites, for example, in the tasks of social computing.","PeriodicalId":169458,"journal":{"name":"2020 XXIII International Conference on Soft Computing and Measurements (SCM)","volume":"19 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Applicability of Similarity Coefficients in Social Circle Matching\",\"authors\":\"A. Korepanova, V. Oliseenko, M. Abramov\",\"doi\":\"10.1109/SCM50615.2020.9198782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the comparison and selection of the similarity coefficient for comparing social circles of users. Comparison of the social environment is used in comparing profiles in various social networking cites and identifying those that belong to one user. Six similarity coefficients are compared using machine learning methods and mathematical statistics. The selected coefficient will allow us to more accurately compare social circles of users and increase efficiency of the binary classifier (logistic regression) determining pair of profiles in various social networking cite belonging to one user. In addition, results of this study can be used in the analysis of social networking cites, for example, in the tasks of social computing.\",\"PeriodicalId\":169458,\"journal\":{\"name\":\"2020 XXIII International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"19 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXIII International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM50615.2020.9198782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXIII International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM50615.2020.9198782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究的重点是对用户社交圈的相似系数进行比较和选择。社会环境比较用于比较各种社交网络中的个人资料,并确定属于某个用户的个人资料。使用机器学习方法和数理统计对六个相似系数进行比较。所选择的系数将使我们能够更准确地比较用户的社交圈,并提高二元分类器(逻辑回归)确定属于一个用户的各种社交网络引用中的对配置文件的效率。此外,本研究的结果可用于社会网络的分析,例如社会计算的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applicability of Similarity Coefficients in Social Circle Matching
This study focuses on the comparison and selection of the similarity coefficient for comparing social circles of users. Comparison of the social environment is used in comparing profiles in various social networking cites and identifying those that belong to one user. Six similarity coefficients are compared using machine learning methods and mathematical statistics. The selected coefficient will allow us to more accurately compare social circles of users and increase efficiency of the binary classifier (logistic regression) determining pair of profiles in various social networking cite belonging to one user. In addition, results of this study can be used in the analysis of social networking cites, for example, in the tasks of social computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信