波形特征对大型标记火山次声数据集的亚火山口分类性能有很强的控制作用

L. Toney, D. Fee, Alex J. C. Witsil, R. Matoza
{"title":"波形特征对大型标记火山次声数据集的亚火山口分类性能有很强的控制作用","authors":"L. Toney, D. Fee, Alex J. C. Witsil, R. Matoza","doi":"10.1785/0320220019","DOIUrl":null,"url":null,"abstract":"\n Volcano infrasound data contain a wealth of information about eruptive patterns, for which machine learning (ML) is an emerging analysis tool. Although global catalogs of labeled infrasound events exist, the application of supervised ML to local (<15 km) volcano infrasound signals has been limited by a lack of robust labeled datasets. Here, we automatically generate a labeled dataset of >7500 explosions recorded by a five-station infrasound network at the highly active Yasur Volcano, Vanuatu. Explosions are located via backprojection and associated with one of Yasur’s two summit subcraters. We then apply a supervised ML approach to classify the subcrater of origin. When trained and tested on data from the same station, our chosen algorithm is >95% accurate; when training and testing on different stations, accuracy drops to about 75%. The choice of waveform features provided to the algorithm strongly influences classification performance.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"16 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Waveform Features Strongly Control Subcrater Classification Performance for a Large, Labeled Volcano Infrasound Dataset\",\"authors\":\"L. Toney, D. Fee, Alex J. C. Witsil, R. Matoza\",\"doi\":\"10.1785/0320220019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Volcano infrasound data contain a wealth of information about eruptive patterns, for which machine learning (ML) is an emerging analysis tool. Although global catalogs of labeled infrasound events exist, the application of supervised ML to local (<15 km) volcano infrasound signals has been limited by a lack of robust labeled datasets. Here, we automatically generate a labeled dataset of >7500 explosions recorded by a five-station infrasound network at the highly active Yasur Volcano, Vanuatu. Explosions are located via backprojection and associated with one of Yasur’s two summit subcraters. We then apply a supervised ML approach to classify the subcrater of origin. When trained and tested on data from the same station, our chosen algorithm is >95% accurate; when training and testing on different stations, accuracy drops to about 75%. The choice of waveform features provided to the algorithm strongly influences classification performance.\",\"PeriodicalId\":273018,\"journal\":{\"name\":\"The Seismic Record\",\"volume\":\"16 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seismic Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0320220019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320220019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

火山次声数据包含大量关于火山喷发模式的信息,机器学习(ML)是一种新兴的分析工具。虽然有标记次声事件的全球目录,但有监督的机器学习应用于瓦努阿图高度活跃的Yasur火山的五站次声网络记录的当地(7500次)爆炸。爆炸是通过反向投影定位的,与亚苏尔的两个山顶子火山口之一有关。然后,我们应用监督ML方法对起源亚坑进行分类。在同一站点的数据上进行训练和测试时,我们选择的算法准确率>95%;当在不同工位进行训练和测试时,准确率下降到75%左右。波形特征的选择对算法的分类性能有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Waveform Features Strongly Control Subcrater Classification Performance for a Large, Labeled Volcano Infrasound Dataset
Volcano infrasound data contain a wealth of information about eruptive patterns, for which machine learning (ML) is an emerging analysis tool. Although global catalogs of labeled infrasound events exist, the application of supervised ML to local (<15 km) volcano infrasound signals has been limited by a lack of robust labeled datasets. Here, we automatically generate a labeled dataset of >7500 explosions recorded by a five-station infrasound network at the highly active Yasur Volcano, Vanuatu. Explosions are located via backprojection and associated with one of Yasur’s two summit subcraters. We then apply a supervised ML approach to classify the subcrater of origin. When trained and tested on data from the same station, our chosen algorithm is >95% accurate; when training and testing on different stations, accuracy drops to about 75%. The choice of waveform features provided to the algorithm strongly influences classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信