{"title":"二维渗流硅纳米场效应晶体管的有限元模拟","authors":"T. Cazimajou, M. Mouis, G. Ghibaudo","doi":"10.1109/ULIS.2018.8354760","DOIUrl":null,"url":null,"abstract":"Percolating networks of silicon nanowires, also called nanonets, have been proposed as a possible material for the channel of Field-Effect Transistors. Experimental results have shown that the dependence of current-voltage characteristics with parameters such as device dimension and nanowire density might be influenced by the statistical dispersion of individual nanowires threshold voltage. In order to further analyse this effect, this paper provides a finite element simulation of such nanonet-based field-effect transistor. We studied the influence on transistor characteristics of above-mentioned parameters. Simulation results were compared with experimental ones using the same parameter extraction methodology as in experiments.","PeriodicalId":383788,"journal":{"name":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","volume":"9 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite element simulation of 2D percolating silicon-nanonet field-effect transistor\",\"authors\":\"T. Cazimajou, M. Mouis, G. Ghibaudo\",\"doi\":\"10.1109/ULIS.2018.8354760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Percolating networks of silicon nanowires, also called nanonets, have been proposed as a possible material for the channel of Field-Effect Transistors. Experimental results have shown that the dependence of current-voltage characteristics with parameters such as device dimension and nanowire density might be influenced by the statistical dispersion of individual nanowires threshold voltage. In order to further analyse this effect, this paper provides a finite element simulation of such nanonet-based field-effect transistor. We studied the influence on transistor characteristics of above-mentioned parameters. Simulation results were compared with experimental ones using the same parameter extraction methodology as in experiments.\",\"PeriodicalId\":383788,\"journal\":{\"name\":\"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)\",\"volume\":\"9 5-6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULIS.2018.8354760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2018.8354760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite element simulation of 2D percolating silicon-nanonet field-effect transistor
Percolating networks of silicon nanowires, also called nanonets, have been proposed as a possible material for the channel of Field-Effect Transistors. Experimental results have shown that the dependence of current-voltage characteristics with parameters such as device dimension and nanowire density might be influenced by the statistical dispersion of individual nanowires threshold voltage. In order to further analyse this effect, this paper provides a finite element simulation of such nanonet-based field-effect transistor. We studied the influence on transistor characteristics of above-mentioned parameters. Simulation results were compared with experimental ones using the same parameter extraction methodology as in experiments.