随机模糊多目标线性分式规划问题的可能性规划研究

Moumita De
{"title":"随机模糊多目标线性分式规划问题的可能性规划研究","authors":"Moumita De","doi":"10.1109/ISCO.2014.7103970","DOIUrl":null,"url":null,"abstract":"The concept of ranking method is an efficient approach to rank fuzzy numbers. In this paper, we have studied stochastic fuzzy multiobjective linear fractional programming problem (SFMOLFPP) where SFMOLFPP is transformed to its equivalent deterministic-crisp multiobjective linear programming problem (MOLPP). To study SFMOLFPP, a SFMOLFPP is presented in which the fuzzy coefficients and scalars in the linear fractional objectives and the fuzzy coefficients are characterised by triangular or trapezoidal fuzzy numbers. The left hand side of the stochastic fuzzy constraints are characterised by triangular or trapezoidal fuzzy numbers, while the right hand sides are assumed to be independent random variable with known distribution function. We have modify Iskander's approach [16] to transform the suggested problem to its equivalence deterministic-crisp MOLPP. We have also used ranking function in SFMOLFPP to find the pareto optimal solution of the reduced multiobjective linear fractional programming problem (MOLFPP). One numerical example is presented to demonstrate two methodologies.","PeriodicalId":119329,"journal":{"name":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","volume":"100 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Study of possibility programming in stochastic fuzzy multiobjective linear fractional programming problem\",\"authors\":\"Moumita De\",\"doi\":\"10.1109/ISCO.2014.7103970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of ranking method is an efficient approach to rank fuzzy numbers. In this paper, we have studied stochastic fuzzy multiobjective linear fractional programming problem (SFMOLFPP) where SFMOLFPP is transformed to its equivalent deterministic-crisp multiobjective linear programming problem (MOLPP). To study SFMOLFPP, a SFMOLFPP is presented in which the fuzzy coefficients and scalars in the linear fractional objectives and the fuzzy coefficients are characterised by triangular or trapezoidal fuzzy numbers. The left hand side of the stochastic fuzzy constraints are characterised by triangular or trapezoidal fuzzy numbers, while the right hand sides are assumed to be independent random variable with known distribution function. We have modify Iskander's approach [16] to transform the suggested problem to its equivalence deterministic-crisp MOLPP. We have also used ranking function in SFMOLFPP to find the pareto optimal solution of the reduced multiobjective linear fractional programming problem (MOLFPP). One numerical example is presented to demonstrate two methodologies.\",\"PeriodicalId\":119329,\"journal\":{\"name\":\"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)\",\"volume\":\"100 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCO.2014.7103970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2014.7103970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

概念排序法是对模糊数进行排序的一种有效方法。本文研究了随机模糊多目标线性分式规划问题(SFMOLFPP),并将其转化为等价的确定性-清晰多目标线性规划问题(MOLPP)。为了研究SFMOLFPP,提出了一种SFMOLFPP,其中线性分数阶物镜中的模糊系数和标量用三角或梯形模糊数表示,模糊系数用三角或梯形模糊数表示。随机模糊约束的左侧以三角形或梯形模糊数为特征,右侧假设为具有已知分布函数的独立随机变量。我们修改了Iskander的方法[16],将建议的问题转化为等价的确定性-脆MOLPP。我们还利用排序函数在SFMOLFPP中找到了简化多目标线性分式规划问题(MOLFPP)的pareto最优解。给出了一个数值例子来说明这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of possibility programming in stochastic fuzzy multiobjective linear fractional programming problem
The concept of ranking method is an efficient approach to rank fuzzy numbers. In this paper, we have studied stochastic fuzzy multiobjective linear fractional programming problem (SFMOLFPP) where SFMOLFPP is transformed to its equivalent deterministic-crisp multiobjective linear programming problem (MOLPP). To study SFMOLFPP, a SFMOLFPP is presented in which the fuzzy coefficients and scalars in the linear fractional objectives and the fuzzy coefficients are characterised by triangular or trapezoidal fuzzy numbers. The left hand side of the stochastic fuzzy constraints are characterised by triangular or trapezoidal fuzzy numbers, while the right hand sides are assumed to be independent random variable with known distribution function. We have modify Iskander's approach [16] to transform the suggested problem to its equivalence deterministic-crisp MOLPP. We have also used ranking function in SFMOLFPP to find the pareto optimal solution of the reduced multiobjective linear fractional programming problem (MOLFPP). One numerical example is presented to demonstrate two methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信