{"title":"基于复值卷积神经网络的信道解码","authors":"Lun Li, Guanghui Yu, Jin Xu, LiGuang Li","doi":"10.1109/6GSUMMIT49458.2020.9083899","DOIUrl":null,"url":null,"abstract":"Inspired by the recent outcomes in deep learning, we propose a novel decoding architecture which concatenates a complex-valued convolutional neural network (CCNN) with a belief propagation (BP) decoder for combating correlated noise in the channel. The CCNN can exploit the complex noise correlation and yield a more accurate estimation of the channel noise. Depressing the influence of channel noise via the proposed architecture, the BP decoder can obtain better decoding performances. Furthermore, extensive experiments are carried out to analyze and verify performances of the proposed framework.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"14 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Decoding Based on Complex-valued Convolutional Neural Networks\",\"authors\":\"Lun Li, Guanghui Yu, Jin Xu, LiGuang Li\",\"doi\":\"10.1109/6GSUMMIT49458.2020.9083899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the recent outcomes in deep learning, we propose a novel decoding architecture which concatenates a complex-valued convolutional neural network (CCNN) with a belief propagation (BP) decoder for combating correlated noise in the channel. The CCNN can exploit the complex noise correlation and yield a more accurate estimation of the channel noise. Depressing the influence of channel noise via the proposed architecture, the BP decoder can obtain better decoding performances. Furthermore, extensive experiments are carried out to analyze and verify performances of the proposed framework.\",\"PeriodicalId\":385212,\"journal\":{\"name\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"volume\":\"14 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd 6G Wireless Summit (6G SUMMIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6GSUMMIT49458.2020.9083899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel Decoding Based on Complex-valued Convolutional Neural Networks
Inspired by the recent outcomes in deep learning, we propose a novel decoding architecture which concatenates a complex-valued convolutional neural network (CCNN) with a belief propagation (BP) decoder for combating correlated noise in the channel. The CCNN can exploit the complex noise correlation and yield a more accurate estimation of the channel noise. Depressing the influence of channel noise via the proposed architecture, the BP decoder can obtain better decoding performances. Furthermore, extensive experiments are carried out to analyze and verify performances of the proposed framework.