基于捕食者/猎物视觉的运动估计

D. V. D. Lijn, G. D. Lopes, Robert Babuška
{"title":"基于捕食者/猎物视觉的运动估计","authors":"D. V. D. Lijn, G. D. Lopes, Robert Babuška","doi":"10.1109/IROS.2010.5653247","DOIUrl":null,"url":null,"abstract":"We present an unscented Kalman filter based state estimator for a fast moving rigid body (such as a mobile robot) endowed with two video cameras. We focus on forward velocity estimation towards the computation of standard energy cost functions for legged locomotion. Points are chosen as image features and the model of each camera is based on the traditional pinhole projection. The resulting filter's state is composed of the rigid body pose and velocities, together with a measure of depth for each tracked point. By taking inspiration from nature's large predatory and grazing mammals eye configuration, we suggest, via simulation results, a solution for the question of finding the best orientation of two cameras, between side and frontal facing, for velocity estimation in a forward moving robot.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"214 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Motion estimation based on predator/prey vision\",\"authors\":\"D. V. D. Lijn, G. D. Lopes, Robert Babuška\",\"doi\":\"10.1109/IROS.2010.5653247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an unscented Kalman filter based state estimator for a fast moving rigid body (such as a mobile robot) endowed with two video cameras. We focus on forward velocity estimation towards the computation of standard energy cost functions for legged locomotion. Points are chosen as image features and the model of each camera is based on the traditional pinhole projection. The resulting filter's state is composed of the rigid body pose and velocities, together with a measure of depth for each tracked point. By taking inspiration from nature's large predatory and grazing mammals eye configuration, we suggest, via simulation results, a solution for the question of finding the best orientation of two cameras, between side and frontal facing, for velocity estimation in a forward moving robot.\",\"PeriodicalId\":420658,\"journal\":{\"name\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"214 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2010.5653247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5653247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对具有两个摄像机的快速运动刚体(如移动机器人),提出了一种基于无气味卡尔曼滤波的状态估计器。我们的重点是向前速度估计,以计算标准能量成本函数的腿的运动。选取点作为图像特征,每个摄像机的模型基于传统的针孔投影。结果过滤器的状态由刚体姿态和速度组成,以及每个跟踪点的深度测量。从自然界大型掠食性和食草哺乳动物的眼睛结构中获得灵感,通过模拟结果,我们提出了一个解决方案,用于寻找两个摄像头的最佳方向,在侧面和正面之间,用于向前移动机器人的速度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion estimation based on predator/prey vision
We present an unscented Kalman filter based state estimator for a fast moving rigid body (such as a mobile robot) endowed with two video cameras. We focus on forward velocity estimation towards the computation of standard energy cost functions for legged locomotion. Points are chosen as image features and the model of each camera is based on the traditional pinhole projection. The resulting filter's state is composed of the rigid body pose and velocities, together with a measure of depth for each tracked point. By taking inspiration from nature's large predatory and grazing mammals eye configuration, we suggest, via simulation results, a solution for the question of finding the best orientation of two cameras, between side and frontal facing, for velocity estimation in a forward moving robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信