基于NSL-KDD数据集的数据预处理对入侵检测的影响分析

N. Paulauskas, Juozas Auskalnis
{"title":"基于NSL-KDD数据集的数据预处理对入侵检测的影响分析","authors":"N. Paulauskas, Juozas Auskalnis","doi":"10.1109/ESTREAM.2017.7950325","DOIUrl":null,"url":null,"abstract":"Data pre-processing for machine learning methods is key step for knowledge discovery process. Depending on nature of the data, pre-processing might take the majority time of data analysis. Correctly prepared data for processing guarantees precise and reliable results of data analysis. This paper analyses initial data pre-processing influence to attack detection accuracy by using Decision Trees, Naïve Bayes and Rule-Based classifiers with NSL-KDD dataset. In addition, the results of detected attacks accuracy dependency by selecting different attacks grouping options and using ensembles of various classifiers are presented.","PeriodicalId":174077,"journal":{"name":"2017 Open Conference of Electrical, Electronic and Information Sciences (eStream)","volume":"4 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Analysis of data pre-processing influence on intrusion detection using NSL-KDD dataset\",\"authors\":\"N. Paulauskas, Juozas Auskalnis\",\"doi\":\"10.1109/ESTREAM.2017.7950325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data pre-processing for machine learning methods is key step for knowledge discovery process. Depending on nature of the data, pre-processing might take the majority time of data analysis. Correctly prepared data for processing guarantees precise and reliable results of data analysis. This paper analyses initial data pre-processing influence to attack detection accuracy by using Decision Trees, Naïve Bayes and Rule-Based classifiers with NSL-KDD dataset. In addition, the results of detected attacks accuracy dependency by selecting different attacks grouping options and using ensembles of various classifiers are presented.\",\"PeriodicalId\":174077,\"journal\":{\"name\":\"2017 Open Conference of Electrical, Electronic and Information Sciences (eStream)\",\"volume\":\"4 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Open Conference of Electrical, Electronic and Information Sciences (eStream)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTREAM.2017.7950325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Open Conference of Electrical, Electronic and Information Sciences (eStream)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTREAM.2017.7950325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

机器学习方法的数据预处理是知识发现过程的关键步骤。根据数据的性质,预处理可能会占用数据分析的大部分时间。正确准备数据进行处理,保证数据分析结果准确可靠。针对NSL-KDD数据集,采用决策树、Naïve贝叶斯和基于规则的分类器分析了初始数据预处理对攻击检测精度的影响。此外,通过选择不同的攻击分组选项和使用各种分类器的集合,给出了检测到的攻击准确度依赖关系的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of data pre-processing influence on intrusion detection using NSL-KDD dataset
Data pre-processing for machine learning methods is key step for knowledge discovery process. Depending on nature of the data, pre-processing might take the majority time of data analysis. Correctly prepared data for processing guarantees precise and reliable results of data analysis. This paper analyses initial data pre-processing influence to attack detection accuracy by using Decision Trees, Naïve Bayes and Rule-Based classifiers with NSL-KDD dataset. In addition, the results of detected attacks accuracy dependency by selecting different attacks grouping options and using ensembles of various classifiers are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信