糖尿病分析和推荐引擎(DARE)

Joe Frederick Samuel, Zied Bouida, Pooria Shafia, Mohamed Hozayen, L. Kassab, Lama Kassab, M. Ibnkahla
{"title":"糖尿病分析和推荐引擎(DARE)","authors":"Joe Frederick Samuel, Zied Bouida, Pooria Shafia, Mohamed Hozayen, L. Kassab, Lama Kassab, M. Ibnkahla","doi":"10.1109/ComNet47917.2020.9306071","DOIUrl":null,"url":null,"abstract":"Diabetes is a chronic disease affecting over 415 million people worldwide. Effectively managing glucose levels on a daily routine is crucial to maintaining a healthy and threat-free lifestyle. In this paper, we propose the Diabetes Analytic and Recommendation Engine (DARE) Architecture to harness personal technologies in assisting type two diabetic patients to manage their glucose levels through a rule-based system coupled with anomaly detection and threat forecasting in a context-driven environment. To this end, the proposed DARE Architecture takes a modular approach in applying machine learning techniques to predict glucose levels and provide context-driven recommendations effectively.","PeriodicalId":351664,"journal":{"name":"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)","volume":"101 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetes Analytics and Recommendation Engine (DARE)\",\"authors\":\"Joe Frederick Samuel, Zied Bouida, Pooria Shafia, Mohamed Hozayen, L. Kassab, Lama Kassab, M. Ibnkahla\",\"doi\":\"10.1109/ComNet47917.2020.9306071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a chronic disease affecting over 415 million people worldwide. Effectively managing glucose levels on a daily routine is crucial to maintaining a healthy and threat-free lifestyle. In this paper, we propose the Diabetes Analytic and Recommendation Engine (DARE) Architecture to harness personal technologies in assisting type two diabetic patients to manage their glucose levels through a rule-based system coupled with anomaly detection and threat forecasting in a context-driven environment. To this end, the proposed DARE Architecture takes a modular approach in applying machine learning techniques to predict glucose levels and provide context-driven recommendations effectively.\",\"PeriodicalId\":351664,\"journal\":{\"name\":\"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)\",\"volume\":\"101 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComNet47917.2020.9306071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComNet47917.2020.9306071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种影响全球4.15亿人的慢性疾病。在日常生活中有效地控制血糖水平对于保持健康和无威胁的生活方式至关重要。在本文中,我们提出了糖尿病分析和推荐引擎(DARE)架构,利用个人技术,通过基于规则的系统,结合上下文驱动环境中的异常检测和威胁预测,帮助2型糖尿病患者管理他们的血糖水平。为此,提议的DARE架构采用模块化方法,应用机器学习技术来预测血糖水平,并有效地提供上下文驱动的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetes Analytics and Recommendation Engine (DARE)
Diabetes is a chronic disease affecting over 415 million people worldwide. Effectively managing glucose levels on a daily routine is crucial to maintaining a healthy and threat-free lifestyle. In this paper, we propose the Diabetes Analytic and Recommendation Engine (DARE) Architecture to harness personal technologies in assisting type two diabetic patients to manage their glucose levels through a rule-based system coupled with anomaly detection and threat forecasting in a context-driven environment. To this end, the proposed DARE Architecture takes a modular approach in applying machine learning techniques to predict glucose levels and provide context-driven recommendations effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信