流行病学模型的贝叶斯估计:方法、因果关系和政策权衡

Jonas E Arias, Jesús Fernández-Villaverde, Juan Rubio Ramírez, Minchul Shin
{"title":"流行病学模型的贝叶斯估计:方法、因果关系和政策权衡","authors":"Jonas E Arias, Jesús Fernández-Villaverde, Juan Rubio Ramírez, Minchul Shin","doi":"10.21799/FRBP.WP.2021.18","DOIUrl":null,"url":null,"abstract":"We present a general framework for Bayesian estimation and causality assessment in epidemiological models. The key to our approach is the use of sequential Monte Carlo methods to evaluate the likelihood of a generic epidemiological model. Once we have the likelihood, we specify priors and rely on a Markov chain Monte Carlo to sample from the posterior distribution. We show how to use the posterior simulation outputs as inputs for exercises in causality assessment. We apply our approach to Belgian data for the COVID-19 epidemic during 2020. Our estimated time-varying-parameters SIRD model captures the data dynamics very well, including the three waves of infections. We use the estimated (true) number of new cases and the time-varying effective reproduction number from the epidemiological model as information for structural vector autoregressions and local projections. We document how additional government-mandated mobility curtailments would have reduced deaths at zero cost or a very small cost in terms of output.","PeriodicalId":121231,"journal":{"name":"CEPR Discussion Paper Series","volume":"38 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs\",\"authors\":\"Jonas E Arias, Jesús Fernández-Villaverde, Juan Rubio Ramírez, Minchul Shin\",\"doi\":\"10.21799/FRBP.WP.2021.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general framework for Bayesian estimation and causality assessment in epidemiological models. The key to our approach is the use of sequential Monte Carlo methods to evaluate the likelihood of a generic epidemiological model. Once we have the likelihood, we specify priors and rely on a Markov chain Monte Carlo to sample from the posterior distribution. We show how to use the posterior simulation outputs as inputs for exercises in causality assessment. We apply our approach to Belgian data for the COVID-19 epidemic during 2020. Our estimated time-varying-parameters SIRD model captures the data dynamics very well, including the three waves of infections. We use the estimated (true) number of new cases and the time-varying effective reproduction number from the epidemiological model as information for structural vector autoregressions and local projections. We document how additional government-mandated mobility curtailments would have reduced deaths at zero cost or a very small cost in terms of output.\",\"PeriodicalId\":121231,\"journal\":{\"name\":\"CEPR Discussion Paper Series\",\"volume\":\"38 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEPR Discussion Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21799/FRBP.WP.2021.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR Discussion Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21799/FRBP.WP.2021.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了流行病学模型中贝叶斯估计和因果关系评估的一般框架。我们方法的关键是使用顺序蒙特卡罗方法来评估通用流行病学模型的可能性。一旦我们有了似然,我们就指定先验,并依靠马尔科夫链蒙特卡罗从后验分布中抽样。我们展示了如何使用后验模拟输出作为因果关系评估练习的输入。我们将我们的方法应用于比利时2020年COVID-19疫情的数据。我们估计的时变参数SIRD模型很好地捕获了数据动态,包括三波感染。我们使用来自流行病学模型的估计(真实)新病例数和时变有效复制数作为结构向量自回归和局部预测的信息。我们记录了额外的政府强制交通限制将如何以零成本或非常小的成本减少死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs
We present a general framework for Bayesian estimation and causality assessment in epidemiological models. The key to our approach is the use of sequential Monte Carlo methods to evaluate the likelihood of a generic epidemiological model. Once we have the likelihood, we specify priors and rely on a Markov chain Monte Carlo to sample from the posterior distribution. We show how to use the posterior simulation outputs as inputs for exercises in causality assessment. We apply our approach to Belgian data for the COVID-19 epidemic during 2020. Our estimated time-varying-parameters SIRD model captures the data dynamics very well, including the three waves of infections. We use the estimated (true) number of new cases and the time-varying effective reproduction number from the epidemiological model as information for structural vector autoregressions and local projections. We document how additional government-mandated mobility curtailments would have reduced deaths at zero cost or a very small cost in terms of output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信