使用忆阻交叉网络的并行计算:消除处理器-内存瓶颈

Alvaro Velasquez, Sumit Kumar Jha
{"title":"使用忆阻交叉网络的并行计算:消除处理器-内存瓶颈","authors":"Alvaro Velasquez, Sumit Kumar Jha","doi":"10.1109/IDT.2014.7038603","DOIUrl":null,"url":null,"abstract":"We are quickly reaching an impasse to the number of transistors that can be squeezed onto a single chip. This has led to a scramble for new nanotechnologies and the subsequent emergence of new computing architectures capable of exploiting these nano-devices. The memristor is a promising More-than-Moore device because of its unique ability to store and manipulate data on the same device. In this paper, we propose a flexible architecture of memristive crossbar networks for computing Boolean formulas. Our design nullifies the gap between processor and memory in von Neumann architectures by using the crossbar both for the storage of data and for performing Boolean computations. We demonstrate the effectiveness of our approach on practically important computations, including parallel Boolean matrix multiplication.","PeriodicalId":122246,"journal":{"name":"2014 9th International Design and Test Symposium (IDT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Parallel computing using memristive crossbar networks: Nullifying the processor-memory bottleneck\",\"authors\":\"Alvaro Velasquez, Sumit Kumar Jha\",\"doi\":\"10.1109/IDT.2014.7038603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are quickly reaching an impasse to the number of transistors that can be squeezed onto a single chip. This has led to a scramble for new nanotechnologies and the subsequent emergence of new computing architectures capable of exploiting these nano-devices. The memristor is a promising More-than-Moore device because of its unique ability to store and manipulate data on the same device. In this paper, we propose a flexible architecture of memristive crossbar networks for computing Boolean formulas. Our design nullifies the gap between processor and memory in von Neumann architectures by using the crossbar both for the storage of data and for performing Boolean computations. We demonstrate the effectiveness of our approach on practically important computations, including parallel Boolean matrix multiplication.\",\"PeriodicalId\":122246,\"journal\":{\"name\":\"2014 9th International Design and Test Symposium (IDT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 9th International Design and Test Symposium (IDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2014.7038603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Design and Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2014.7038603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们很快就陷入了一个僵局,那就是在一个芯片上可以压缩晶体管的数量。这导致了对新纳米技术的争夺,以及随后能够利用这些纳米设备的新计算架构的出现。忆阻器是一种比摩尔器件更有前途的器件,因为它具有在同一器件上存储和操作数据的独特能力。本文提出了一种计算布尔公式的记忆交叉网络的灵活结构。我们的设计通过使用横杆来存储数据和执行布尔计算,消除了冯·诺伊曼架构中处理器和内存之间的差距。我们证明了我们的方法在实际重要计算中的有效性,包括并行布尔矩阵乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel computing using memristive crossbar networks: Nullifying the processor-memory bottleneck
We are quickly reaching an impasse to the number of transistors that can be squeezed onto a single chip. This has led to a scramble for new nanotechnologies and the subsequent emergence of new computing architectures capable of exploiting these nano-devices. The memristor is a promising More-than-Moore device because of its unique ability to store and manipulate data on the same device. In this paper, we propose a flexible architecture of memristive crossbar networks for computing Boolean formulas. Our design nullifies the gap between processor and memory in von Neumann architectures by using the crossbar both for the storage of data and for performing Boolean computations. We demonstrate the effectiveness of our approach on practically important computations, including parallel Boolean matrix multiplication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信