{"title":"磁场中多功能空化处理改性树脂粘弹性","authors":"T. Yoshimura, Seijiro Fujinaga, Masataka Ijiri","doi":"10.29121/ijoest.v6.i4.2022.364","DOIUrl":null,"url":null,"abstract":"The viscoelastic properties of polyamide 11 samples were modified by subjecting these specimens to multifunction cavitation within a magnetic field, using a device equipped with a 0.1 mm water jet nozzle. During these trials, a magnetic field was applied to the entire water jet stream while varying the distance between the nozzle and the specimen. The effects of various processing conditions were assessed by monitoring the removal of ink applied to sample surfaces. The results obtained using this technique with and without a magnetic field were also evaluated.","PeriodicalId":331301,"journal":{"name":"International Journal of Engineering Science Technologies","volume":"95 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MODIFYING RESIN VISCOELASTICITY BY MULTIFUNCTION CAVITATION PROCESSING IN A MAGNETIC FIELD\",\"authors\":\"T. Yoshimura, Seijiro Fujinaga, Masataka Ijiri\",\"doi\":\"10.29121/ijoest.v6.i4.2022.364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The viscoelastic properties of polyamide 11 samples were modified by subjecting these specimens to multifunction cavitation within a magnetic field, using a device equipped with a 0.1 mm water jet nozzle. During these trials, a magnetic field was applied to the entire water jet stream while varying the distance between the nozzle and the specimen. The effects of various processing conditions were assessed by monitoring the removal of ink applied to sample surfaces. The results obtained using this technique with and without a magnetic field were also evaluated.\",\"PeriodicalId\":331301,\"journal\":{\"name\":\"International Journal of Engineering Science Technologies\",\"volume\":\"95 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29121/ijoest.v6.i4.2022.364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/ijoest.v6.i4.2022.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODIFYING RESIN VISCOELASTICITY BY MULTIFUNCTION CAVITATION PROCESSING IN A MAGNETIC FIELD
The viscoelastic properties of polyamide 11 samples were modified by subjecting these specimens to multifunction cavitation within a magnetic field, using a device equipped with a 0.1 mm water jet nozzle. During these trials, a magnetic field was applied to the entire water jet stream while varying the distance between the nozzle and the specimen. The effects of various processing conditions were assessed by monitoring the removal of ink applied to sample surfaces. The results obtained using this technique with and without a magnetic field were also evaluated.