圆上拉普拉斯方程的罗宾问题的推广

M. Baltabaeva, B. Turmetov
{"title":"圆上拉普拉斯方程的罗宾问题的推广","authors":"M. Baltabaeva, B. Turmetov","doi":"10.47526/2022-3/2524-0080.03","DOIUrl":null,"url":null,"abstract":"In this paper, we study the solvability of the fractional analogue of the Robin problem for the Laplace equation. A modified fractional differentiation operator in the sense of Hadamard is considered as a boundary operator. Boundary conditions are given in the form of a connection between different values of the unknown function in a circle. The problem is solved using the Fourier expansion method. For various values of the parameters of the boundary operators involved, theorems on the existence and uniqueness of a solution to the problem under study are proved.","PeriodicalId":171505,"journal":{"name":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","volume":"37 26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a generalization of the robin problem for the Laplace equation in the circle\",\"authors\":\"M. Baltabaeva, B. Turmetov\",\"doi\":\"10.47526/2022-3/2524-0080.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the solvability of the fractional analogue of the Robin problem for the Laplace equation. A modified fractional differentiation operator in the sense of Hadamard is considered as a boundary operator. Boundary conditions are given in the form of a connection between different values of the unknown function in a circle. The problem is solved using the Fourier expansion method. For various values of the parameters of the boundary operators involved, theorems on the existence and uniqueness of a solution to the problem under study are proved.\",\"PeriodicalId\":171505,\"journal\":{\"name\":\"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)\",\"volume\":\"37 26\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47526/2022-3/2524-0080.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47526/2022-3/2524-0080.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了拉普拉斯方程的Robin问题的分数阶模拟的可解性。考虑了Hadamard意义上的改进分数阶微分算子作为边界算子。边界条件以圆内未知函数的不同值之间的连接形式给出。用傅里叶展开法解决了这个问题。对于所涉及的边界算子参数的不同取值,证明了所研究问题解的存在唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a generalization of the robin problem for the Laplace equation in the circle
In this paper, we study the solvability of the fractional analogue of the Robin problem for the Laplace equation. A modified fractional differentiation operator in the sense of Hadamard is considered as a boundary operator. Boundary conditions are given in the form of a connection between different values of the unknown function in a circle. The problem is solved using the Fourier expansion method. For various values of the parameters of the boundary operators involved, theorems on the existence and uniqueness of a solution to the problem under study are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信