{"title":"用于GNSS的宽带高效氮化镓功率放大器的设计","authors":"Y. Zhuang, Jiafeng Zhou, Yi Huang, Anqi Chen","doi":"10.1109/IEEE-IWS.2016.7585464","DOIUrl":null,"url":null,"abstract":"This paper presents the design, implementation and experimental results of a broadband high efficiency GaN-HEMT power amplifier. The source-pull and load-pull simulations were employed to determine the optimum input and output impedance of a GaN transistor over 0.9-1.5 GHz in terms of maximum power added efficiency (PAE). A low-pass network based on a closed-form solution was applied for impedance matching and then it was transferred to a band-pass network. Norton Transformation was used to scale up impedances without sacrificing bandwidth or matching. For large signals, the amplifier can achieve a power gain of 9.5-13.5 dB across 0.9-1.5 GHz while the output power is 10-22W. The corresponding power added efficiency (PAE) is 60%-86%. This power amplifier is suitable for satellite communications systems and GNSS applications.","PeriodicalId":185971,"journal":{"name":"2016 IEEE MTT-S International Wireless Symposium (IWS)","volume":"73 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design of a broadband high efficiency GaN power amplifier for GNSS applications\",\"authors\":\"Y. Zhuang, Jiafeng Zhou, Yi Huang, Anqi Chen\",\"doi\":\"10.1109/IEEE-IWS.2016.7585464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, implementation and experimental results of a broadband high efficiency GaN-HEMT power amplifier. The source-pull and load-pull simulations were employed to determine the optimum input and output impedance of a GaN transistor over 0.9-1.5 GHz in terms of maximum power added efficiency (PAE). A low-pass network based on a closed-form solution was applied for impedance matching and then it was transferred to a band-pass network. Norton Transformation was used to scale up impedances without sacrificing bandwidth or matching. For large signals, the amplifier can achieve a power gain of 9.5-13.5 dB across 0.9-1.5 GHz while the output power is 10-22W. The corresponding power added efficiency (PAE) is 60%-86%. This power amplifier is suitable for satellite communications systems and GNSS applications.\",\"PeriodicalId\":185971,\"journal\":{\"name\":\"2016 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"73 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEE-IWS.2016.7585464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2016.7585464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a broadband high efficiency GaN power amplifier for GNSS applications
This paper presents the design, implementation and experimental results of a broadband high efficiency GaN-HEMT power amplifier. The source-pull and load-pull simulations were employed to determine the optimum input and output impedance of a GaN transistor over 0.9-1.5 GHz in terms of maximum power added efficiency (PAE). A low-pass network based on a closed-form solution was applied for impedance matching and then it was transferred to a band-pass network. Norton Transformation was used to scale up impedances without sacrificing bandwidth or matching. For large signals, the amplifier can achieve a power gain of 9.5-13.5 dB across 0.9-1.5 GHz while the output power is 10-22W. The corresponding power added efficiency (PAE) is 60%-86%. This power amplifier is suitable for satellite communications systems and GNSS applications.