VLSI神经网络心律失常分类器的设计

H. Shawkey, H. Elsimary, H. Haddara, H. Ragaie
{"title":"VLSI神经网络心律失常分类器的设计","authors":"H. Shawkey, H. Elsimary, H. Haddara, H. Ragaie","doi":"10.1109/NRSC.1999.760911","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are now attractive tools to enhance and improve the efficiency, the capability and the features of instrumentation in applications related to measurements, system identification, and control. The aim of this paper is to implement an implantable cardiverter defibrillator (ICD) using an analog neural network. The paper describes a VLSI neural network chip to be implemented using 1.2 /spl mu/m CMOS technology, which acts as an intracardiac tachycardia classification system. A robust neural network is less sensitive to noise, drift and offsets inherent in analog applications. The proposed classifier uses two types of neural networks a Kohonen self organizing map (KSOM) circuit and a winner take all (WTA) circuit.","PeriodicalId":250544,"journal":{"name":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","volume":"5 37","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design of a VLSI neural network arrhythmia classifier\",\"authors\":\"H. Shawkey, H. Elsimary, H. Haddara, H. Ragaie\",\"doi\":\"10.1109/NRSC.1999.760911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks are now attractive tools to enhance and improve the efficiency, the capability and the features of instrumentation in applications related to measurements, system identification, and control. The aim of this paper is to implement an implantable cardiverter defibrillator (ICD) using an analog neural network. The paper describes a VLSI neural network chip to be implemented using 1.2 /spl mu/m CMOS technology, which acts as an intracardiac tachycardia classification system. A robust neural network is less sensitive to noise, drift and offsets inherent in analog applications. The proposed classifier uses two types of neural networks a Kohonen self organizing map (KSOM) circuit and a winner take all (WTA) circuit.\",\"PeriodicalId\":250544,\"journal\":{\"name\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"volume\":\"5 37\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.1999.760911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1999.760911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人工神经网络现在是增强和改善测量、系统识别和控制应用中仪器的效率、能力和特征的有吸引力的工具。本文的目的是利用模拟神经网络实现植入式心脏除颤器(ICD)。本文介绍了一种采用1.2 /spl μ m CMOS技术实现的VLSI神经网络芯片,该芯片可作为心内心动过速分类系统。鲁棒神经网络对模拟应用中固有的噪声、漂移和偏移不太敏感。提出的分类器使用两种类型的神经网络:Kohonen自组织映射(KSOM)电路和赢家通吃(WTA)电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a VLSI neural network arrhythmia classifier
Artificial neural networks are now attractive tools to enhance and improve the efficiency, the capability and the features of instrumentation in applications related to measurements, system identification, and control. The aim of this paper is to implement an implantable cardiverter defibrillator (ICD) using an analog neural network. The paper describes a VLSI neural network chip to be implemented using 1.2 /spl mu/m CMOS technology, which acts as an intracardiac tachycardia classification system. A robust neural network is less sensitive to noise, drift and offsets inherent in analog applications. The proposed classifier uses two types of neural networks a Kohonen self organizing map (KSOM) circuit and a winner take all (WTA) circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信