{"title":"综合路由方案和逆变开关,开发了移动可控节能系统","authors":"J. Chen","doi":"10.1049/iet-cds.2018.0086","DOIUrl":null,"url":null,"abstract":"The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrated routing scheme and inverter switch to develop a mobile controlled energy saving system\",\"authors\":\"J. Chen\",\"doi\":\"10.1049/iet-cds.2018.0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-cds.2018.0086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2018.0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated routing scheme and inverter switch to develop a mobile controlled energy saving system
The solutions of inverter switch and routing scheme are integrated to develop a mobile controlled energy saving system (MCESS). For the transient response problem of an n-channel metal-oxide-semiconductor field-effect transistor acting as an invert switch, and a routing scheme is solved for developing the MCESS. It can be claimed that all the mentioned previously schemes are very challenge for addressing the problems in the design of an analogue processing circuit and the implementation of Android applications (or Apps). The developed MCESS is experimentally verified automatically switch for adjusting the energy output appropriately. A control system with a solution of MCESS can replace the traditional sustainable energy systems, and obtain much longer lifetime and a steady state of the storage equipment. Furthermore, the proposed MCESS integrates Apps developed on a smart device using the Android platform with different wireless protocols, such as WiFi, Bluetooth for controlling the system with contactless. Moreover, there much experience in the development of MCESS is provided audiences with useful materials, for example a routing solution that employs wireless local area network with the WiFi protocol is implemented to transmit packets of the regulator circuit and the instant feedback display.