B. Kushwaha, Gautam Rituraj, Praveen Kumar, P. Bauer
{"title":"串并联补偿无线电力传输系统在不同不对准情况下的数学模型分析","authors":"B. Kushwaha, Gautam Rituraj, Praveen Kumar, P. Bauer","doi":"10.1049/IET-CDS.2018.5044","DOIUrl":null,"url":null,"abstract":"In recent years, the use of wireless power transfer (WPT) has gained momentum in electric vehicle charging. To design the WPT system, three-dimensional (3D) finite element method (FEM) is used for mutual inductance calculation, and the system performance is evaluated using a circuit simulator. The use of 3D FEM makes the initial design a tedious process. Hence, there is a need for a reliable analytical model which can be used in the preliminary design process. This work proposes a mathematical model of a series–parallel (SP) compensated WPT system that can determine the mutual inductance and the system parameters such as voltage, current, power, and efficiency for different misalignments. The mathematical model consists of electromagnetic and steady-state models. This model can be used to analyse the component stress of SP compensated WPT system. The results of the mathematical model are verified experimentally. Thus, the proposed method can be adopted in the initial design process of SP compensated WPT system.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mathematical model for the analysis of series-parallel compensated wireless power transfer system for different misalignments\",\"authors\":\"B. Kushwaha, Gautam Rituraj, Praveen Kumar, P. Bauer\",\"doi\":\"10.1049/IET-CDS.2018.5044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the use of wireless power transfer (WPT) has gained momentum in electric vehicle charging. To design the WPT system, three-dimensional (3D) finite element method (FEM) is used for mutual inductance calculation, and the system performance is evaluated using a circuit simulator. The use of 3D FEM makes the initial design a tedious process. Hence, there is a need for a reliable analytical model which can be used in the preliminary design process. This work proposes a mathematical model of a series–parallel (SP) compensated WPT system that can determine the mutual inductance and the system parameters such as voltage, current, power, and efficiency for different misalignments. The mathematical model consists of electromagnetic and steady-state models. This model can be used to analyse the component stress of SP compensated WPT system. The results of the mathematical model are verified experimentally. Thus, the proposed method can be adopted in the initial design process of SP compensated WPT system.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IET-CDS.2018.5044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-CDS.2018.5044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical model for the analysis of series-parallel compensated wireless power transfer system for different misalignments
In recent years, the use of wireless power transfer (WPT) has gained momentum in electric vehicle charging. To design the WPT system, three-dimensional (3D) finite element method (FEM) is used for mutual inductance calculation, and the system performance is evaluated using a circuit simulator. The use of 3D FEM makes the initial design a tedious process. Hence, there is a need for a reliable analytical model which can be used in the preliminary design process. This work proposes a mathematical model of a series–parallel (SP) compensated WPT system that can determine the mutual inductance and the system parameters such as voltage, current, power, and efficiency for different misalignments. The mathematical model consists of electromagnetic and steady-state models. This model can be used to analyse the component stress of SP compensated WPT system. The results of the mathematical model are verified experimentally. Thus, the proposed method can be adopted in the initial design process of SP compensated WPT system.