{"title":"多可选推理集的切条件","authors":"Harold T. Hodes","doi":"10.1002/malq.202000032","DOIUrl":null,"url":null,"abstract":"<p>I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set <i>F</i> and a binary relation ⊢ on <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {P}(F)$</annotation>\n </semantics></math>, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cut-conditions on sets of multiple-alternative inferences\",\"authors\":\"Harold T. Hodes\",\"doi\":\"10.1002/malq.202000032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set <i>F</i> and a binary relation ⊢ on <math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {P}(F)$</annotation>\\n </semantics></math>, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cut-conditions on sets of multiple-alternative inferences
I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set F and a binary relation ⊢ on , if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.