多可选推理集的切条件

Pub Date : 2022-02-02 DOI:10.1002/malq.202000032
Harold T. Hodes
{"title":"多可选推理集的切条件","authors":"Harold T. Hodes","doi":"10.1002/malq.202000032","DOIUrl":null,"url":null,"abstract":"<p>I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set <i>F</i> and a binary relation ⊢ on <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {P}(F)$</annotation>\n </semantics></math>, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cut-conditions on sets of multiple-alternative inferences\",\"authors\":\"Harold T. Hodes\",\"doi\":\"10.1002/malq.202000032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set <i>F</i> and a binary relation ⊢ on <math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {P}(F)$</annotation>\\n </semantics></math>, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一些弱集合论的假设下,我证明布尔素数理想定理等价于我称之为公式切到集合切定理:对于一个集合F和一个二元关系∑P (F)$ \mathcal {P}(F)$,如果它是有限的,单调的,并且满足公式的切,那么它也满足集合的切。我两次从超滤定理推导出CF/CS定理;每个证明都使用了tukey - teichm ller引理的不同序理论变体。然后讨论在无有限性或单调性的情况下,各种切割条件之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cut-conditions on sets of multiple-alternative inferences

I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set F and a binary relation ⊢ on P ( F ) $\mathcal {P}(F)$ , if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信