三元阶无源分数阶LC n-端口的合成

Guishu Liang, Zheng Qi
{"title":"三元阶无源分数阶LC n-端口的合成","authors":"Guishu Liang, Zheng Qi","doi":"10.1049/iet-cds.2018.5166","DOIUrl":null,"url":null,"abstract":"Fractional-order circuits find a widespread use in different engineering applications. The problem of realising fractional-order circuits has been discussed by several authors, however, it is far from being solved. Realising fractional-order resistorless passive network with three element orders is been studied. At first, this study extends the two-variable reactance matrix synthesis method to three-variable case, and then proposes a synthesis method of fractional-order reactance matrix with three element orders by variable substitution. The process in above methods mainly involves variable substitution, decomposition of three-variable reactance matrix, extraction of unit inductors, Laurent series expansion, spectral factorisation of two-variable positive semidefinite Hermitian matrix and synthesis of univariable reactance matrix. Then the above-mentioned synthesis process is illustrated by two examples.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synthesis of passive fractional-order LC n-port with three element orders\",\"authors\":\"Guishu Liang, Zheng Qi\",\"doi\":\"10.1049/iet-cds.2018.5166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional-order circuits find a widespread use in different engineering applications. The problem of realising fractional-order circuits has been discussed by several authors, however, it is far from being solved. Realising fractional-order resistorless passive network with three element orders is been studied. At first, this study extends the two-variable reactance matrix synthesis method to three-variable case, and then proposes a synthesis method of fractional-order reactance matrix with three element orders by variable substitution. The process in above methods mainly involves variable substitution, decomposition of three-variable reactance matrix, extraction of unit inductors, Laurent series expansion, spectral factorisation of two-variable positive semidefinite Hermitian matrix and synthesis of univariable reactance matrix. Then the above-mentioned synthesis process is illustrated by two examples.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-cds.2018.5166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2018.5166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分数阶电路在不同的工程应用中有着广泛的应用。实现分数阶电路的问题已经被一些作者讨论过,然而,这个问题还远没有解决。研究了三元阶分数阶无阻无源网络的实现。本文首先将二变量电抗矩阵的综合方法推广到三变量情况,然后通过变量替换提出了一种具有三元阶的分数阶电抗矩阵的综合方法。上述方法的过程主要包括变量替换、三变量电抗矩阵的分解、单位电感的提取、劳伦级数展开、两变量正半定厄米特矩阵的谱分解和单变量电抗矩阵的合成。然后通过两个实例说明了上述合成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of passive fractional-order LC n-port with three element orders
Fractional-order circuits find a widespread use in different engineering applications. The problem of realising fractional-order circuits has been discussed by several authors, however, it is far from being solved. Realising fractional-order resistorless passive network with three element orders is been studied. At first, this study extends the two-variable reactance matrix synthesis method to three-variable case, and then proposes a synthesis method of fractional-order reactance matrix with three element orders by variable substitution. The process in above methods mainly involves variable substitution, decomposition of three-variable reactance matrix, extraction of unit inductors, Laurent series expansion, spectral factorisation of two-variable positive semidefinite Hermitian matrix and synthesis of univariable reactance matrix. Then the above-mentioned synthesis process is illustrated by two examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信