单细胞水平环境细菌分析

Masahito Hosokawa, Yohei Nishikawa, M. Kogawa, H. Takeyama
{"title":"单细胞水平环境细菌分析","authors":"Masahito Hosokawa, Yohei Nishikawa, M. Kogawa, H. Takeyama","doi":"10.1109/TRANSDUCERS.2017.7994129","DOIUrl":null,"url":null,"abstract":"Single-cell genomics has enabled the exploration of cellular diversity in environmental microbes. However, current genome sequencing techniques, which utilizes next-generation sequencing (NGS), typically require nanogram to microgram levels of input DNA sample. Since single bacterial cells contain only a few femtograms of DNA, we have to amplify their genomes to adequate amount for sequencing. We aimed to develop a novel system for precise and high throughput single-cell genomics, to elucidate environmental microbial diversity. In this study, we have developed droplet-based microfluidic system to produce the compartmentalized reaction vessels for single-cell genome sequencing.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of environmental bacteria at single-cell level\",\"authors\":\"Masahito Hosokawa, Yohei Nishikawa, M. Kogawa, H. Takeyama\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell genomics has enabled the exploration of cellular diversity in environmental microbes. However, current genome sequencing techniques, which utilizes next-generation sequencing (NGS), typically require nanogram to microgram levels of input DNA sample. Since single bacterial cells contain only a few femtograms of DNA, we have to amplify their genomes to adequate amount for sequencing. We aimed to develop a novel system for precise and high throughput single-cell genomics, to elucidate environmental microbial diversity. In this study, we have developed droplet-based microfluidic system to produce the compartmentalized reaction vessels for single-cell genome sequencing.\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

单细胞基因组学使探索环境微生物的细胞多样性成为可能。然而,目前利用下一代测序(NGS)的基因组测序技术通常需要纳克到微克水平的输入DNA样本。由于单个细菌细胞只包含少量的DNA飞图,我们必须将其基因组扩增到足够的数量以进行测序。我们的目标是开发一个新的系统,精确和高通量的单细胞基因组学,阐明环境微生物多样性。在这项研究中,我们开发了基于液滴的微流控系统来生产用于单细胞基因组测序的区隔化反应血管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of environmental bacteria at single-cell level
Single-cell genomics has enabled the exploration of cellular diversity in environmental microbes. However, current genome sequencing techniques, which utilizes next-generation sequencing (NGS), typically require nanogram to microgram levels of input DNA sample. Since single bacterial cells contain only a few femtograms of DNA, we have to amplify their genomes to adequate amount for sequencing. We aimed to develop a novel system for precise and high throughput single-cell genomics, to elucidate environmental microbial diversity. In this study, we have developed droplet-based microfluidic system to produce the compartmentalized reaction vessels for single-cell genome sequencing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信