求解二阶Sylvester矩阵方程EXF2+AXF+CX+BY=D的矩阵形式LSQR迭代法

Sheng-Kun Li
{"title":"求解二阶Sylvester矩阵方程EXF2+AXF+CX+BY=D的矩阵形式LSQR迭代法","authors":"Sheng-Kun Li","doi":"10.1109/CISE.2010.5676729","DOIUrl":null,"url":null,"abstract":"In this paper, an iterative method is proposed to solve the second-order Sylvester matrix equation EXF^{2}+AXF+CX+BY=D with unknown matrix pair [X, Y], based on a matrix form of LSQR algorithm. By this iterative method, we can obtain the minimum Frobenius norm solution pair or the minimum Frobenius norm least squares solution pair over some constrained matrices, such as symmetric, generalized bisymmetric and (R, S)-symmetric matrices.","PeriodicalId":232832,"journal":{"name":"2010 International Conference on Computational Intelligence and Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Matrix-Form LSQR Iterative Method for Solving the Second-Order Sylvester Matrix Equation EXF2+AXF+CX+BY=D\",\"authors\":\"Sheng-Kun Li\",\"doi\":\"10.1109/CISE.2010.5676729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an iterative method is proposed to solve the second-order Sylvester matrix equation EXF^{2}+AXF+CX+BY=D with unknown matrix pair [X, Y], based on a matrix form of LSQR algorithm. By this iterative method, we can obtain the minimum Frobenius norm solution pair or the minimum Frobenius norm least squares solution pair over some constrained matrices, such as symmetric, generalized bisymmetric and (R, S)-symmetric matrices.\",\"PeriodicalId\":232832,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2010.5676729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2010.5676729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于LSQR算法的矩阵形式,提出了一种求解未知矩阵对[X, Y]的二阶Sylvester矩阵方程EXF^{2}+AXF+CX+BY=D的迭代方法。通过这种迭代方法,我们可以得到对称矩阵、广义双对称矩阵和(R, S)对称矩阵上的最小Frobenius范数解对或最小Frobenius范数最小二乘解对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Matrix-Form LSQR Iterative Method for Solving the Second-Order Sylvester Matrix Equation EXF2+AXF+CX+BY=D
In this paper, an iterative method is proposed to solve the second-order Sylvester matrix equation EXF^{2}+AXF+CX+BY=D with unknown matrix pair [X, Y], based on a matrix form of LSQR algorithm. By this iterative method, we can obtain the minimum Frobenius norm solution pair or the minimum Frobenius norm least squares solution pair over some constrained matrices, such as symmetric, generalized bisymmetric and (R, S)-symmetric matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信