生物传感应用的多硫醇锚定DNA单层膜

P. A. Johnson, R. Levicky
{"title":"生物传感应用的多硫醇锚定DNA单层膜","authors":"P. A. Johnson, R. Levicky","doi":"10.1109/NEBC.2005.1431994","DOIUrl":null,"url":null,"abstract":"Recent technological advances have seen the development of various platforms for detecting biomolecular interactions. An important aspect of the modification of solid supports with biological polymers is to anchor the molecule of interest permanently and in well-defined attachment geometry. Gold is the most common metal support for research applications but suffers from a lack of methods for producing robust biomolecular films that can withstand prolonged use, especially at elevated temperatures. This paper reports on the development of a novel attachment scheme for immobilizing biomolecules to metal supports. Poly(mercaptopropyl)methylsiloxane (PMPMS) films chemisorbed on gold provide thermally stable, nanometer-thin, thiol-rich anchor layers suitable for subsequent attachment of biomolecules. The exceptional stability of PMPMS-anchored single stranded DNA monolayers is anticipated to benefit applications in biomolecular diagnostics, as well as assist in fundamental investigations of biomacromolecules at interfaces. In an attempt to exploit PMPMS films in impedance-based biodiagnostics, initial studies have shown that immobilization of DNA to the PMPMS modified Au surfaces lowers the interfacial capacitance. Preliminary results on hybridization of target DNA to the probe modified surfaces show that impedance changes can be measured.","PeriodicalId":256365,"journal":{"name":"Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polythiol-anchored DNA monolayers for biosensing applications\",\"authors\":\"P. A. Johnson, R. Levicky\",\"doi\":\"10.1109/NEBC.2005.1431994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent technological advances have seen the development of various platforms for detecting biomolecular interactions. An important aspect of the modification of solid supports with biological polymers is to anchor the molecule of interest permanently and in well-defined attachment geometry. Gold is the most common metal support for research applications but suffers from a lack of methods for producing robust biomolecular films that can withstand prolonged use, especially at elevated temperatures. This paper reports on the development of a novel attachment scheme for immobilizing biomolecules to metal supports. Poly(mercaptopropyl)methylsiloxane (PMPMS) films chemisorbed on gold provide thermally stable, nanometer-thin, thiol-rich anchor layers suitable for subsequent attachment of biomolecules. The exceptional stability of PMPMS-anchored single stranded DNA monolayers is anticipated to benefit applications in biomolecular diagnostics, as well as assist in fundamental investigations of biomacromolecules at interfaces. In an attempt to exploit PMPMS films in impedance-based biodiagnostics, initial studies have shown that immobilization of DNA to the PMPMS modified Au surfaces lowers the interfacial capacitance. Preliminary results on hybridization of target DNA to the probe modified surfaces show that impedance changes can be measured.\",\"PeriodicalId\":256365,\"journal\":{\"name\":\"Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEBC.2005.1431994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.2005.1431994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的技术进步已经看到了各种检测生物分子相互作用的平台的发展。用生物聚合物修饰固体载体的一个重要方面是永久锚定感兴趣的分子,并以明确定义的附着几何形状。金是研究应用中最常见的金属支撑材料,但缺乏生产能够承受长时间使用的坚固的生物分子膜的方法,特别是在高温下。本文报道了一种将生物分子固定在金属支架上的新型附着方案的发展。聚(巯基丙基)甲基硅氧烷(PMPMS)薄膜化学吸附在金上,提供热稳定、纳米薄、富含硫醇的锚定层,适用于随后的生物分子附着。pmpms锚定的单链DNA单层具有优异的稳定性,预计将有利于生物分子诊断的应用,并有助于生物大分子界面的基础研究。为了将PMPMS薄膜应用于基于阻抗的生物诊断,初步研究表明,将DNA固定在PMPMS修饰的Au表面上可以降低界面电容。靶DNA与探针修饰表面杂交的初步结果表明,可以测量阻抗变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polythiol-anchored DNA monolayers for biosensing applications
Recent technological advances have seen the development of various platforms for detecting biomolecular interactions. An important aspect of the modification of solid supports with biological polymers is to anchor the molecule of interest permanently and in well-defined attachment geometry. Gold is the most common metal support for research applications but suffers from a lack of methods for producing robust biomolecular films that can withstand prolonged use, especially at elevated temperatures. This paper reports on the development of a novel attachment scheme for immobilizing biomolecules to metal supports. Poly(mercaptopropyl)methylsiloxane (PMPMS) films chemisorbed on gold provide thermally stable, nanometer-thin, thiol-rich anchor layers suitable for subsequent attachment of biomolecules. The exceptional stability of PMPMS-anchored single stranded DNA monolayers is anticipated to benefit applications in biomolecular diagnostics, as well as assist in fundamental investigations of biomacromolecules at interfaces. In an attempt to exploit PMPMS films in impedance-based biodiagnostics, initial studies have shown that immobilization of DNA to the PMPMS modified Au surfaces lowers the interfacial capacitance. Preliminary results on hybridization of target DNA to the probe modified surfaces show that impedance changes can be measured.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信