{"title":"半导体中的皮秒光折变和自由载流子非线性","authors":"A. Smirl, J. Dubard, G. Valley, T. Boggess","doi":"10.1364/nlopm.1988.mc3","DOIUrl":null,"url":null,"abstract":"A variety of picosecond time-resolved two-beam coupling, transient grating and degenerate-four-wave mixing techniques are used to investigate the nonlinear loss and to measure the strength, formation and decay of photorefractive gratings written in GaAs and InP:Fe and of free-carrier gratings written in Si, GaAs, and InP by 43-ps pulses at a wavelength of 1 μm. We present data and numerical calculations as a function of fluence, time delay, pump-to-probe ratio, pump polarization, analyzer angle and crystal orientation. We observe photorefractive gains of a few percent at fluences of a few pJ/μm2 (0.1 mJ/cm2) in GaAs and InP, and we identify two sources for the photorefractive space-charge field. It is principally between mobile free carriers and stationary single-photon ionized donors at low fluences and between mobile electrons and holes produced by two-photon absorption at high fluences. We also observe strong transient energy transfer from the nominally \"unshifted\" free-carrier index gratings written in GaAs and InP by two-photon absorption and in Si by single-photon indirect absorption. We have demonstrated optical switches based on the pump-induced photorefractive rotation of the probe polarization in GaAs with on/off ratios of >2/1 at fluences as low as 400 fJ/μm2 and optical switches based on free-carrier transient-energy-transfer with on/off ratios >20,000/1 at 200 pJ/μm2. We have also used transient-energy-transfer to construct weak beam amplifiers with gains >25 at 30 mJ/cm2. Finally, these techniques have been used to obtain information about the properties of the deep-level (mid-gap) states in GaAs (EL2/EL2+) and InP (Fe2+/Fe3+), such as the cross sections and number densities.","PeriodicalId":208307,"journal":{"name":"Nonlinear Optical Properties of Materials","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picosecond Photorefractive and Free-Carrier Nonlinearities in Semiconductors\",\"authors\":\"A. Smirl, J. Dubard, G. Valley, T. Boggess\",\"doi\":\"10.1364/nlopm.1988.mc3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of picosecond time-resolved two-beam coupling, transient grating and degenerate-four-wave mixing techniques are used to investigate the nonlinear loss and to measure the strength, formation and decay of photorefractive gratings written in GaAs and InP:Fe and of free-carrier gratings written in Si, GaAs, and InP by 43-ps pulses at a wavelength of 1 μm. We present data and numerical calculations as a function of fluence, time delay, pump-to-probe ratio, pump polarization, analyzer angle and crystal orientation. We observe photorefractive gains of a few percent at fluences of a few pJ/μm2 (0.1 mJ/cm2) in GaAs and InP, and we identify two sources for the photorefractive space-charge field. It is principally between mobile free carriers and stationary single-photon ionized donors at low fluences and between mobile electrons and holes produced by two-photon absorption at high fluences. We also observe strong transient energy transfer from the nominally \\\"unshifted\\\" free-carrier index gratings written in GaAs and InP by two-photon absorption and in Si by single-photon indirect absorption. We have demonstrated optical switches based on the pump-induced photorefractive rotation of the probe polarization in GaAs with on/off ratios of >2/1 at fluences as low as 400 fJ/μm2 and optical switches based on free-carrier transient-energy-transfer with on/off ratios >20,000/1 at 200 pJ/μm2. We have also used transient-energy-transfer to construct weak beam amplifiers with gains >25 at 30 mJ/cm2. Finally, these techniques have been used to obtain information about the properties of the deep-level (mid-gap) states in GaAs (EL2/EL2+) and InP (Fe2+/Fe3+), such as the cross sections and number densities.\",\"PeriodicalId\":208307,\"journal\":{\"name\":\"Nonlinear Optical Properties of Materials\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Optical Properties of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/nlopm.1988.mc3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optical Properties of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nlopm.1988.mc3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Picosecond Photorefractive and Free-Carrier Nonlinearities in Semiconductors
A variety of picosecond time-resolved two-beam coupling, transient grating and degenerate-four-wave mixing techniques are used to investigate the nonlinear loss and to measure the strength, formation and decay of photorefractive gratings written in GaAs and InP:Fe and of free-carrier gratings written in Si, GaAs, and InP by 43-ps pulses at a wavelength of 1 μm. We present data and numerical calculations as a function of fluence, time delay, pump-to-probe ratio, pump polarization, analyzer angle and crystal orientation. We observe photorefractive gains of a few percent at fluences of a few pJ/μm2 (0.1 mJ/cm2) in GaAs and InP, and we identify two sources for the photorefractive space-charge field. It is principally between mobile free carriers and stationary single-photon ionized donors at low fluences and between mobile electrons and holes produced by two-photon absorption at high fluences. We also observe strong transient energy transfer from the nominally "unshifted" free-carrier index gratings written in GaAs and InP by two-photon absorption and in Si by single-photon indirect absorption. We have demonstrated optical switches based on the pump-induced photorefractive rotation of the probe polarization in GaAs with on/off ratios of >2/1 at fluences as low as 400 fJ/μm2 and optical switches based on free-carrier transient-energy-transfer with on/off ratios >20,000/1 at 200 pJ/μm2. We have also used transient-energy-transfer to construct weak beam amplifiers with gains >25 at 30 mJ/cm2. Finally, these techniques have been used to obtain information about the properties of the deep-level (mid-gap) states in GaAs (EL2/EL2+) and InP (Fe2+/Fe3+), such as the cross sections and number densities.