基于入侵杂草优化算法的线性天线阵列综合

S. Pal, Aniruddha Basak, Swagatam Das, A. Abraham
{"title":"基于入侵杂草优化算法的线性天线阵列综合","authors":"S. Pal, Aniruddha Basak, Swagatam Das, A. Abraham","doi":"10.1109/SoCPaR.2009.42","DOIUrl":null,"url":null,"abstract":"Linear antenna array design is one of the most important electromagnetic optimization problems of current interest. This article describes the application of a recently developed metaheuristic algorithm, known as the Invasive Weed Optimization (IWO), to optimize the spacing between the elements of the linear array to produce a radiation pattern with minimum side lobe level and null placement control. The results of the IWO algorithm have been shown to meet or beat the results obtained using other state-of-the-art metaheuristics like the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Memetic Algorithms (MA), and Tabu Search (TS) in a statistically meaningful way","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Linear Antenna Array Synthesis with Invasive Weed Optimization Algorithm\",\"authors\":\"S. Pal, Aniruddha Basak, Swagatam Das, A. Abraham\",\"doi\":\"10.1109/SoCPaR.2009.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear antenna array design is one of the most important electromagnetic optimization problems of current interest. This article describes the application of a recently developed metaheuristic algorithm, known as the Invasive Weed Optimization (IWO), to optimize the spacing between the elements of the linear array to produce a radiation pattern with minimum side lobe level and null placement control. The results of the IWO algorithm have been shown to meet or beat the results obtained using other state-of-the-art metaheuristics like the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Memetic Algorithms (MA), and Tabu Search (TS) in a statistically meaningful way\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

线性天线阵列设计是当前最重要的电磁优化问题之一。本文描述了最近开发的一种称为入侵杂草优化(IWO)的元启发式算法的应用,该算法用于优化线性阵列元素之间的间距,以产生具有最小旁瓣电平和空位置控制的辐射方向图。IWO算法的结果已被证明在统计意义上达到或超过使用其他最先进的元启发式方法如遗传算法(GA),粒子群优化(PSO),模因算法(MA)和禁忌搜索(TS)获得的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Antenna Array Synthesis with Invasive Weed Optimization Algorithm
Linear antenna array design is one of the most important electromagnetic optimization problems of current interest. This article describes the application of a recently developed metaheuristic algorithm, known as the Invasive Weed Optimization (IWO), to optimize the spacing between the elements of the linear array to produce a radiation pattern with minimum side lobe level and null placement control. The results of the IWO algorithm have been shown to meet or beat the results obtained using other state-of-the-art metaheuristics like the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Memetic Algorithms (MA), and Tabu Search (TS) in a statistically meaningful way
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信