一种新的非完整车辆直线跟踪方法

Y. Kanayama, F. Fahroo
{"title":"一种新的非完整车辆直线跟踪方法","authors":"Y. Kanayama, F. Fahroo","doi":"10.1109/ROBOT.1997.606728","DOIUrl":null,"url":null,"abstract":"We investigate the problem of finding an algorithm for the movement of a vehicle under the nonholonomic constraint to track a given directed straight line without allowing any spinning motion. We propose a new principle of computing the derivative of path curvature as a linear combination of the current vehicle path curvature, vehicle orientation error, and positional error. We call this function the steering function. By linearization we find an optimal selection of parameters for critically damped motions and obtain a single parameter, /spl sigma/, for tracking, which we call smoothness. The uniform asymptotic stability of the feedback rule is proved through a Lyapunov function. Numerous simulation results as well as experimental results obtained on the autonomous robot Yamabico at the Naval Postgraduate School are included to show the effectiveness of this method.","PeriodicalId":225473,"journal":{"name":"Proceedings of International Conference on Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A new line tracking method for nonholonomic vehicles\",\"authors\":\"Y. Kanayama, F. Fahroo\",\"doi\":\"10.1109/ROBOT.1997.606728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the problem of finding an algorithm for the movement of a vehicle under the nonholonomic constraint to track a given directed straight line without allowing any spinning motion. We propose a new principle of computing the derivative of path curvature as a linear combination of the current vehicle path curvature, vehicle orientation error, and positional error. We call this function the steering function. By linearization we find an optimal selection of parameters for critically damped motions and obtain a single parameter, /spl sigma/, for tracking, which we call smoothness. The uniform asymptotic stability of the feedback rule is proved through a Lyapunov function. Numerous simulation results as well as experimental results obtained on the autonomous robot Yamabico at the Naval Postgraduate School are included to show the effectiveness of this method.\",\"PeriodicalId\":225473,\"journal\":{\"name\":\"Proceedings of International Conference on Robotics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1997.606728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1997.606728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

我们研究了在非完整约束下,车辆在不允许任何旋转运动的情况下,沿着给定的有向直线运动的算法问题。我们提出了一种计算路径曲率导数的新原理,即当前车辆路径曲率、车辆方向误差和位置误差的线性组合。我们称这个函数为转向函数。通过线性化,我们找到了临界阻尼运动参数的最优选择,并获得了单个参数/spl sigma/,用于跟踪,我们称之为平滑。通过Lyapunov函数证明了反馈规则的一致渐近稳定性。通过海军研究生院自主机器人Yamabico的大量仿真结果和实验结果,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new line tracking method for nonholonomic vehicles
We investigate the problem of finding an algorithm for the movement of a vehicle under the nonholonomic constraint to track a given directed straight line without allowing any spinning motion. We propose a new principle of computing the derivative of path curvature as a linear combination of the current vehicle path curvature, vehicle orientation error, and positional error. We call this function the steering function. By linearization we find an optimal selection of parameters for critically damped motions and obtain a single parameter, /spl sigma/, for tracking, which we call smoothness. The uniform asymptotic stability of the feedback rule is proved through a Lyapunov function. Numerous simulation results as well as experimental results obtained on the autonomous robot Yamabico at the Naval Postgraduate School are included to show the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信