{"title":"同步尖峰中时间结构中的信息传输","authors":"Chaofei Hong, Jiang Wang, Y. Che","doi":"10.1109/NER.2019.8717154","DOIUrl":null,"url":null,"abstract":"Neuronal gamma-band synchronization is a common phenomenon found in cortical networks, which is considered as a potential mechanism for communication among brain areas. How neural assemblies transit information within the narrow time window of each gamma cycle is still an open question. Previous modeling studies have demonstrated that precise spike timing can robustly carry information with the propagation of strongly synchronized spikes. Here we show that the temporal structure of loosely synchronized spikes within each gamma cycle can also effectively carry information in the noisy cortical networks. The relative spiking phase of the synchronous spikes are significantly more consistent under the same stimulus compared to those in random stimuli. Moreover, there is an optimal conduction delay distribution for the network to maximize the information transmission. Our work suggests that the loosely synchronized spikes in the gamma cycles may provide a fundamental mechanism for neural communication using temporal codes.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Transmission through Temporal Structure in Synchronous spikes\",\"authors\":\"Chaofei Hong, Jiang Wang, Y. Che\",\"doi\":\"10.1109/NER.2019.8717154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuronal gamma-band synchronization is a common phenomenon found in cortical networks, which is considered as a potential mechanism for communication among brain areas. How neural assemblies transit information within the narrow time window of each gamma cycle is still an open question. Previous modeling studies have demonstrated that precise spike timing can robustly carry information with the propagation of strongly synchronized spikes. Here we show that the temporal structure of loosely synchronized spikes within each gamma cycle can also effectively carry information in the noisy cortical networks. The relative spiking phase of the synchronous spikes are significantly more consistent under the same stimulus compared to those in random stimuli. Moreover, there is an optimal conduction delay distribution for the network to maximize the information transmission. Our work suggests that the loosely synchronized spikes in the gamma cycles may provide a fundamental mechanism for neural communication using temporal codes.\",\"PeriodicalId\":356177,\"journal\":{\"name\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2019.8717154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8717154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Information Transmission through Temporal Structure in Synchronous spikes
Neuronal gamma-band synchronization is a common phenomenon found in cortical networks, which is considered as a potential mechanism for communication among brain areas. How neural assemblies transit information within the narrow time window of each gamma cycle is still an open question. Previous modeling studies have demonstrated that precise spike timing can robustly carry information with the propagation of strongly synchronized spikes. Here we show that the temporal structure of loosely synchronized spikes within each gamma cycle can also effectively carry information in the noisy cortical networks. The relative spiking phase of the synchronous spikes are significantly more consistent under the same stimulus compared to those in random stimuli. Moreover, there is an optimal conduction delay distribution for the network to maximize the information transmission. Our work suggests that the loosely synchronized spikes in the gamma cycles may provide a fundamental mechanism for neural communication using temporal codes.