同步尖峰中时间结构中的信息传输

Chaofei Hong, Jiang Wang, Y. Che
{"title":"同步尖峰中时间结构中的信息传输","authors":"Chaofei Hong, Jiang Wang, Y. Che","doi":"10.1109/NER.2019.8717154","DOIUrl":null,"url":null,"abstract":"Neuronal gamma-band synchronization is a common phenomenon found in cortical networks, which is considered as a potential mechanism for communication among brain areas. How neural assemblies transit information within the narrow time window of each gamma cycle is still an open question. Previous modeling studies have demonstrated that precise spike timing can robustly carry information with the propagation of strongly synchronized spikes. Here we show that the temporal structure of loosely synchronized spikes within each gamma cycle can also effectively carry information in the noisy cortical networks. The relative spiking phase of the synchronous spikes are significantly more consistent under the same stimulus compared to those in random stimuli. Moreover, there is an optimal conduction delay distribution for the network to maximize the information transmission. Our work suggests that the loosely synchronized spikes in the gamma cycles may provide a fundamental mechanism for neural communication using temporal codes.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Transmission through Temporal Structure in Synchronous spikes\",\"authors\":\"Chaofei Hong, Jiang Wang, Y. Che\",\"doi\":\"10.1109/NER.2019.8717154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuronal gamma-band synchronization is a common phenomenon found in cortical networks, which is considered as a potential mechanism for communication among brain areas. How neural assemblies transit information within the narrow time window of each gamma cycle is still an open question. Previous modeling studies have demonstrated that precise spike timing can robustly carry information with the propagation of strongly synchronized spikes. Here we show that the temporal structure of loosely synchronized spikes within each gamma cycle can also effectively carry information in the noisy cortical networks. The relative spiking phase of the synchronous spikes are significantly more consistent under the same stimulus compared to those in random stimuli. Moreover, there is an optimal conduction delay distribution for the network to maximize the information transmission. Our work suggests that the loosely synchronized spikes in the gamma cycles may provide a fundamental mechanism for neural communication using temporal codes.\",\"PeriodicalId\":356177,\"journal\":{\"name\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2019.8717154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8717154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经元-波段同步是皮层网络中的一种普遍现象,被认为是脑区间通信的一种潜在机制。神经集合如何在每个伽马周期的狭窄时间窗口内传递信息仍然是一个悬而未决的问题。以往的建模研究表明,精确的尖峰定时可以通过强同步尖峰的传播稳健地携带信息。在这里,我们表明,在每个伽马周期内松散同步的尖峰的时间结构也可以有效地在嘈杂的皮层网络中携带信息。与随机刺激相比,在相同刺激下,同步峰的相对峰相更加一致。此外,网络存在最优传导时延分布,使信息传输最大化。我们的研究表明,伽马周期中松散同步的尖峰可能为使用时间编码的神经通信提供了一种基本机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Transmission through Temporal Structure in Synchronous spikes
Neuronal gamma-band synchronization is a common phenomenon found in cortical networks, which is considered as a potential mechanism for communication among brain areas. How neural assemblies transit information within the narrow time window of each gamma cycle is still an open question. Previous modeling studies have demonstrated that precise spike timing can robustly carry information with the propagation of strongly synchronized spikes. Here we show that the temporal structure of loosely synchronized spikes within each gamma cycle can also effectively carry information in the noisy cortical networks. The relative spiking phase of the synchronous spikes are significantly more consistent under the same stimulus compared to those in random stimuli. Moreover, there is an optimal conduction delay distribution for the network to maximize the information transmission. Our work suggests that the loosely synchronized spikes in the gamma cycles may provide a fundamental mechanism for neural communication using temporal codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信