{"title":"铅对两种水生植物生长速率的影响海棠(Humb & Bonpl)海涅和埃格里亚稠密的普兰奇。在不同的实验培养基中生长","authors":"F. Di̇kmen, Vahide Cansu Seymenoğlu, M. Ergönül","doi":"10.53447/communc.1225993","DOIUrl":null,"url":null,"abstract":"Anthropogenic causes contribute to toxic pollutants in aquatic environments and heavy metal pollution. As a heavy metal, Lead (Pb), is one of the most common causes of pollution in water. Heavy metals must be removed from the aquatic environment because they adversely affect health and all living things in each environment. In this study we aimed to determine the effects of lead (Pb) exposure on the growth rates and biomass of two aquatic macrophyte species, E. densa and L. laevigatum. Plants grown in in two different experimental media. For this purpose, both plants were exposed to 3 different concentrations of lead (1 ppm, 5 ppm, 15 ppm). Samples were measured on the 1st, 4th and 7th days, and the first and last weights of the plants were compared. Bioexperiments were run in triplicate. Positive values were observed in the growth rates of both plants, except for the negative growth rates observed on the 1st day at 1 ppm and 5 ppm lead concentrations in the pond water environment. Both plants showed positive growth in 25% Hoagland medium at all concentrations and days, except for the 1 ppm lead concentration, being observed for E. densa. As a result of our study, lead exposure did not significantly alter the growth rates of E. densa and L. laevigatum in the experimental media used for short-term (up tp 7 days) durations.","PeriodicalId":249015,"journal":{"name":"Communications Faculty of Science University of Ankara Series C Biology Geological Engineering and Geophysical Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of lead (Pb) on the growth rates of two aquatic macrophyte species; Limnobium laevigatum (Humb & Bonpl. ex Willd) Heine and Egeria densa Planch. grown in different experimental media\",\"authors\":\"F. Di̇kmen, Vahide Cansu Seymenoğlu, M. Ergönül\",\"doi\":\"10.53447/communc.1225993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anthropogenic causes contribute to toxic pollutants in aquatic environments and heavy metal pollution. As a heavy metal, Lead (Pb), is one of the most common causes of pollution in water. Heavy metals must be removed from the aquatic environment because they adversely affect health and all living things in each environment. In this study we aimed to determine the effects of lead (Pb) exposure on the growth rates and biomass of two aquatic macrophyte species, E. densa and L. laevigatum. Plants grown in in two different experimental media. For this purpose, both plants were exposed to 3 different concentrations of lead (1 ppm, 5 ppm, 15 ppm). Samples were measured on the 1st, 4th and 7th days, and the first and last weights of the plants were compared. Bioexperiments were run in triplicate. Positive values were observed in the growth rates of both plants, except for the negative growth rates observed on the 1st day at 1 ppm and 5 ppm lead concentrations in the pond water environment. Both plants showed positive growth in 25% Hoagland medium at all concentrations and days, except for the 1 ppm lead concentration, being observed for E. densa. As a result of our study, lead exposure did not significantly alter the growth rates of E. densa and L. laevigatum in the experimental media used for short-term (up tp 7 days) durations.\",\"PeriodicalId\":249015,\"journal\":{\"name\":\"Communications Faculty of Science University of Ankara Series C Biology Geological Engineering and Geophysical Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Science University of Ankara Series C Biology Geological Engineering and Geophysical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53447/communc.1225993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Science University of Ankara Series C Biology Geological Engineering and Geophysical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53447/communc.1225993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of lead (Pb) on the growth rates of two aquatic macrophyte species; Limnobium laevigatum (Humb & Bonpl. ex Willd) Heine and Egeria densa Planch. grown in different experimental media
Anthropogenic causes contribute to toxic pollutants in aquatic environments and heavy metal pollution. As a heavy metal, Lead (Pb), is one of the most common causes of pollution in water. Heavy metals must be removed from the aquatic environment because they adversely affect health and all living things in each environment. In this study we aimed to determine the effects of lead (Pb) exposure on the growth rates and biomass of two aquatic macrophyte species, E. densa and L. laevigatum. Plants grown in in two different experimental media. For this purpose, both plants were exposed to 3 different concentrations of lead (1 ppm, 5 ppm, 15 ppm). Samples were measured on the 1st, 4th and 7th days, and the first and last weights of the plants were compared. Bioexperiments were run in triplicate. Positive values were observed in the growth rates of both plants, except for the negative growth rates observed on the 1st day at 1 ppm and 5 ppm lead concentrations in the pond water environment. Both plants showed positive growth in 25% Hoagland medium at all concentrations and days, except for the 1 ppm lead concentration, being observed for E. densa. As a result of our study, lead exposure did not significantly alter the growth rates of E. densa and L. laevigatum in the experimental media used for short-term (up tp 7 days) durations.