{"title":"卷积神经网络推理加速器的高效循环平铺框架","authors":"Hongmin Huang, Xianghong Hu, Xueming Li, Xiaoming Xiong","doi":"10.1049/cds2.12091","DOIUrl":null,"url":null,"abstract":"<p>Convolutional neural networks (CNNs) have been widely applied in the field of computer vision due to their inherent advantages in image feature extraction. However, it is difficult to implement CNNs directly on embedded platforms owing to excessive calculations of CNNs. Field Programmable Gate Arrays have been popular in CNN accelerators because of their configurability and high energy efficiency. Given the highly parallel workloads of the CNN, a CNN accelerator with a 14 × 16 processing element array is designed in this study to accelerate the CNN inference. Besides, a loop tiling strategy for convolutional layers is proposed to efficiently transmit feature maps. Additionally, the roofline model is employed to explore the best tiling parameters for optimal performance. Finally, the accelerator written in Verilog-HDL language is implemented on the Xilinx Zynq-7045 evaluation platform. At an operating frequency of 200 MHz, the proposed accelerator can achieve a performance of 57.24 giga operations per second on You Only Look Once v2-tiny and 78.39 GOPS on Visual Geometry Group-16. The accelerator only consumes 224 DSPs, demonstrating a better performance compared with the previous works.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 1","pages":"116-123"},"PeriodicalIF":1.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12091","citationCount":"3","resultStr":"{\"title\":\"An efficient loop tiling framework for convolutional neural network inference accelerators\",\"authors\":\"Hongmin Huang, Xianghong Hu, Xueming Li, Xiaoming Xiong\",\"doi\":\"10.1049/cds2.12091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convolutional neural networks (CNNs) have been widely applied in the field of computer vision due to their inherent advantages in image feature extraction. However, it is difficult to implement CNNs directly on embedded platforms owing to excessive calculations of CNNs. Field Programmable Gate Arrays have been popular in CNN accelerators because of their configurability and high energy efficiency. Given the highly parallel workloads of the CNN, a CNN accelerator with a 14 × 16 processing element array is designed in this study to accelerate the CNN inference. Besides, a loop tiling strategy for convolutional layers is proposed to efficiently transmit feature maps. Additionally, the roofline model is employed to explore the best tiling parameters for optimal performance. Finally, the accelerator written in Verilog-HDL language is implemented on the Xilinx Zynq-7045 evaluation platform. At an operating frequency of 200 MHz, the proposed accelerator can achieve a performance of 57.24 giga operations per second on You Only Look Once v2-tiny and 78.39 GOPS on Visual Geometry Group-16. The accelerator only consumes 224 DSPs, demonstrating a better performance compared with the previous works.</p>\",\"PeriodicalId\":50386,\"journal\":{\"name\":\"Iet Circuits Devices & Systems\",\"volume\":\"16 1\",\"pages\":\"116-123\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12091\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Circuits Devices & Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12091\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12091","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
摘要
卷积神经网络(Convolutional neural network, cnn)由于其在图像特征提取方面的固有优势,在计算机视觉领域得到了广泛的应用。然而,由于cnn的计算量过大,直接在嵌入式平台上实现cnn很困难。现场可编程门阵列由于其可配置性和高能效在CNN加速器中得到了广泛的应用。考虑到CNN的高度并行工作负载,本研究设计了一个14 × 16处理单元阵列的CNN加速器来加速CNN的推理。此外,提出了一种卷积层的循环平铺策略,以有效地传输特征映射。此外,采用屋顶线模型来探索最佳平铺参数以获得最佳性能。最后,在Xilinx Zynq-7045评估平台上实现了Verilog-HDL语言编写的加速器。在200 MHz的工作频率下,所提出的加速器在You Only Look Once v2-tiny上可以实现每秒57.24千兆的运算性能,在Visual Geometry Group-16上可以实现78.39 GOPS。该加速器仅消耗224个dsp,与以往的工作相比,性能更好。
An efficient loop tiling framework for convolutional neural network inference accelerators
Convolutional neural networks (CNNs) have been widely applied in the field of computer vision due to their inherent advantages in image feature extraction. However, it is difficult to implement CNNs directly on embedded platforms owing to excessive calculations of CNNs. Field Programmable Gate Arrays have been popular in CNN accelerators because of their configurability and high energy efficiency. Given the highly parallel workloads of the CNN, a CNN accelerator with a 14 × 16 processing element array is designed in this study to accelerate the CNN inference. Besides, a loop tiling strategy for convolutional layers is proposed to efficiently transmit feature maps. Additionally, the roofline model is employed to explore the best tiling parameters for optimal performance. Finally, the accelerator written in Verilog-HDL language is implemented on the Xilinx Zynq-7045 evaluation platform. At an operating frequency of 200 MHz, the proposed accelerator can achieve a performance of 57.24 giga operations per second on You Only Look Once v2-tiny and 78.39 GOPS on Visual Geometry Group-16. The accelerator only consumes 224 DSPs, demonstrating a better performance compared with the previous works.
期刊介绍:
IET Circuits, Devices & Systems covers the following topics:
Circuit theory and design, circuit analysis and simulation, computer aided design
Filters (analogue and switched capacitor)
Circuit implementations, cells and architectures for integration including VLSI
Testability, fault tolerant design, minimisation of circuits and CAD for VLSI
Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs
Device and process characterisation, device parameter extraction schemes
Mathematics of circuits and systems theory
Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers