地球上丰富的太阳能电池材料的理论和实验研究

Yanfa Yan, W. Yin, T. Shi, F. Hong, J. Ge, Y. Yue, W. Ke, D. Zhao, A. Cimaroli
{"title":"地球上丰富的太阳能电池材料的理论和实验研究","authors":"Yanfa Yan, W. Yin, T. Shi, F. Hong, J. Ge, Y. Yue, W. Ke, D. Zhao, A. Cimaroli","doi":"10.1109/AM-FPD.2015.7173196","DOIUrl":null,"url":null,"abstract":"In this paper, we present theoretical and experimental studies of two representative earth-abundant, thin-film solar cell materials: Cu<sub>2</sub>ZnSnS<sub>4</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. Using first-principles density-functional theory, we show that both Cu<sub>2</sub>ZnSnS<sub>4</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> exhibit electronic and optical properties that are suitable for solar cell applications. However, the defect physics are rather different in these two earth-abundant solar cell materials: the dominant defects produce deep gap states in Cu<sub>2</sub>ZnSnS<sub>4</sub> but only shallow states in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, indicating that CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> is a more promising candidate for achieving high efficiency solar cells. Through the synthesis and characterization of Cu<sub>2</sub>ZnSnS<sub>4</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-based thin-film solar cells, we show that CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-based thin-film solar cells exhibit significantly higher performance than Cu<sub>2</sub>ZnSnS<sub>4</sub>-based solar cells.","PeriodicalId":243757,"journal":{"name":"2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and experimental study of earth-abundant solar cell materials\",\"authors\":\"Yanfa Yan, W. Yin, T. Shi, F. Hong, J. Ge, Y. Yue, W. Ke, D. Zhao, A. Cimaroli\",\"doi\":\"10.1109/AM-FPD.2015.7173196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present theoretical and experimental studies of two representative earth-abundant, thin-film solar cell materials: Cu<sub>2</sub>ZnSnS<sub>4</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. Using first-principles density-functional theory, we show that both Cu<sub>2</sub>ZnSnS<sub>4</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> exhibit electronic and optical properties that are suitable for solar cell applications. However, the defect physics are rather different in these two earth-abundant solar cell materials: the dominant defects produce deep gap states in Cu<sub>2</sub>ZnSnS<sub>4</sub> but only shallow states in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, indicating that CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> is a more promising candidate for achieving high efficiency solar cells. Through the synthesis and characterization of Cu<sub>2</sub>ZnSnS<sub>4</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-based thin-film solar cells, we show that CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>-based thin-film solar cells exhibit significantly higher performance than Cu<sub>2</sub>ZnSnS<sub>4</sub>-based solar cells.\",\"PeriodicalId\":243757,\"journal\":{\"name\":\"2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AM-FPD.2015.7173196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2015.7173196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对Cu2ZnSnS4和CH3NH3PbI3这两种具有代表性的地球丰富的薄膜太阳能电池材料进行了理论和实验研究。利用第一性原理密度泛函理论,我们证明Cu2ZnSnS4和CH3NH3PbI3都具有适合太阳能电池应用的电子和光学性质。然而,这两种地球资源丰富的太阳能电池材料的缺陷物理特性却大不相同:Cu2ZnSnS4的主要缺陷产生深隙态,而CH3NH3PbI3的主要缺陷产生浅隙态,这表明CH3NH3PbI3是更有希望获得高效太阳能电池的候选材料。通过Cu2ZnSnS4和ch3nh3pbi3薄膜太阳能电池的合成和表征,我们发现ch3nh3pbi3薄膜太阳能电池的性能明显高于Cu2ZnSnS4薄膜太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical and experimental study of earth-abundant solar cell materials
In this paper, we present theoretical and experimental studies of two representative earth-abundant, thin-film solar cell materials: Cu2ZnSnS4 and CH3NH3PbI3. Using first-principles density-functional theory, we show that both Cu2ZnSnS4 and CH3NH3PbI3 exhibit electronic and optical properties that are suitable for solar cell applications. However, the defect physics are rather different in these two earth-abundant solar cell materials: the dominant defects produce deep gap states in Cu2ZnSnS4 but only shallow states in CH3NH3PbI3, indicating that CH3NH3PbI3 is a more promising candidate for achieving high efficiency solar cells. Through the synthesis and characterization of Cu2ZnSnS4 and CH3NH3PbI3-based thin-film solar cells, we show that CH3NH3PbI3-based thin-film solar cells exhibit significantly higher performance than Cu2ZnSnS4-based solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信