基于可解释变量空间生成功能响应

H.-P. Shen, Bin Wu
{"title":"基于可解释变量空间生成功能响应","authors":"H.-P. Shen, Bin Wu","doi":"10.1109/ITNEC48623.2020.9084670","DOIUrl":null,"url":null,"abstract":"How to generate responses with different sentence functions is the most challenging task in the area of dialogue systems. Conventional Sequence-to-Sequence (Seq2seq) model cannot generate sentences with different functions based on the same context by using beam search. In this paper, we design a new model to solve this problem. Our model combines an Autoencoder (AE) with a Seq2seq model by sharing the same decoder. It encodes posts and responses into different space variables and restructures the responses respectively. Besides, we introduce a latent variable to extract sentence function and Triplet loss to make variable space interpretable. The results show that our model has the ability to generate different sentences based on the target functional factor and reach a high degree of fluency and diversity in responses.","PeriodicalId":235524,"journal":{"name":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Functional Responses Based on Interpretable Variable Space\",\"authors\":\"H.-P. Shen, Bin Wu\",\"doi\":\"10.1109/ITNEC48623.2020.9084670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to generate responses with different sentence functions is the most challenging task in the area of dialogue systems. Conventional Sequence-to-Sequence (Seq2seq) model cannot generate sentences with different functions based on the same context by using beam search. In this paper, we design a new model to solve this problem. Our model combines an Autoencoder (AE) with a Seq2seq model by sharing the same decoder. It encodes posts and responses into different space variables and restructures the responses respectively. Besides, we introduce a latent variable to extract sentence function and Triplet loss to make variable space interpretable. The results show that our model has the ability to generate different sentences based on the target functional factor and reach a high degree of fluency and diversity in responses.\",\"PeriodicalId\":235524,\"journal\":{\"name\":\"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC48623.2020.9084670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC48623.2020.9084670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如何用不同的句子功能生成响应是对话系统领域最具挑战性的任务。传统的序列到序列(Sequence-to-Sequence, Seq2seq)模型不能基于相同的上下文使用束搜索生成不同功能的句子。在本文中,我们设计了一个新的模型来解决这个问题。我们的模型通过共享相同的解码器将自动编码器(AE)与Seq2seq模型结合在一起。将帖子和回复编码为不同的空间变量,并分别对回复进行重构。此外,我们引入了一个潜在变量来提取句子功能,并引入了三重损失来使变量空间具有可解释性。结果表明,我们的模型能够根据目标功能因子生成不同的句子,并且达到了高度的流畅性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Functional Responses Based on Interpretable Variable Space
How to generate responses with different sentence functions is the most challenging task in the area of dialogue systems. Conventional Sequence-to-Sequence (Seq2seq) model cannot generate sentences with different functions based on the same context by using beam search. In this paper, we design a new model to solve this problem. Our model combines an Autoencoder (AE) with a Seq2seq model by sharing the same decoder. It encodes posts and responses into different space variables and restructures the responses respectively. Besides, we introduce a latent variable to extract sentence function and Triplet loss to make variable space interpretable. The results show that our model has the ability to generate different sentences based on the target functional factor and reach a high degree of fluency and diversity in responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信