光电流光谱研究GaAs/GaAlAs QW-GRIN结构中的垂直输运

K. Herrmann, J. Tomm
{"title":"光电流光谱研究GaAs/GaAlAs QW-GRIN结构中的垂直输运","authors":"K. Herrmann, J. Tomm","doi":"10.1117/12.368330","DOIUrl":null,"url":null,"abstract":"GaAs/GaAlAs quantum well (QW) structures for graded index (GRIN) near IR injection lasers have been studied by polarization dependent photocurrent spectroscopy in the spectral region of QW transitions and in a wide range of temperatures 20 K <EQ T <EQ 375 K. The photocurrent has been measured under short-circuit conditions for the electric vector of the light wave parallel to the plane of the waveguide (TE) as well as perpendicular to the plane of the waveguide (TM). Distinct edges are observed in the quantum efficiency spectra and attributed to the onset of transitions form the heavy hole to electron and light hole to electron subbands, respectively. The observation of different spectral features in TE and TM spectra is discussed in terms of selection rules and mode coupling into the waveguide. Edge positions are compared with calculations of the well states. Coulomb interaction manifests itself in the occurrence of n equals 1 excitonic lines at the hh1-e1, 1h1-e1 and 1h2-e2 subband edges. Temperature dependent measurements indicate mechanisms for carrier escape form the QW. At intermediate temperatures the photocurrent is thermally activated, an explanation in terms of thermionic emission theory is given, and the justification of assuming thermalized non-equilibrium carriers is discussed for different transitions. The observed activation energy is correlated with the energy scale in the QW. At low temperatures the temperature dependence is weak, carrier escape is explained by tunnelling. At the highest temperatures the quantum efficiency decreases again, this is attributed to the growing influence of recombination.","PeriodicalId":276773,"journal":{"name":"Material Science and Material Properties for Infrared Optics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical transport in GaAs/GaAlAs QW-GRIN structures studied by photocurrent spectroscopy\",\"authors\":\"K. Herrmann, J. Tomm\",\"doi\":\"10.1117/12.368330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaAs/GaAlAs quantum well (QW) structures for graded index (GRIN) near IR injection lasers have been studied by polarization dependent photocurrent spectroscopy in the spectral region of QW transitions and in a wide range of temperatures 20 K <EQ T <EQ 375 K. The photocurrent has been measured under short-circuit conditions for the electric vector of the light wave parallel to the plane of the waveguide (TE) as well as perpendicular to the plane of the waveguide (TM). Distinct edges are observed in the quantum efficiency spectra and attributed to the onset of transitions form the heavy hole to electron and light hole to electron subbands, respectively. The observation of different spectral features in TE and TM spectra is discussed in terms of selection rules and mode coupling into the waveguide. Edge positions are compared with calculations of the well states. Coulomb interaction manifests itself in the occurrence of n equals 1 excitonic lines at the hh1-e1, 1h1-e1 and 1h2-e2 subband edges. Temperature dependent measurements indicate mechanisms for carrier escape form the QW. At intermediate temperatures the photocurrent is thermally activated, an explanation in terms of thermionic emission theory is given, and the justification of assuming thermalized non-equilibrium carriers is discussed for different transitions. The observed activation energy is correlated with the energy scale in the QW. At low temperatures the temperature dependence is weak, carrier escape is explained by tunnelling. At the highest temperatures the quantum efficiency decreases again, this is attributed to the growing influence of recombination.\",\"PeriodicalId\":276773,\"journal\":{\"name\":\"Material Science and Material Properties for Infrared Optics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science and Material Properties for Infrared Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.368330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science and Material Properties for Infrared Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.368330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在20 K 本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Vertical transport in GaAs/GaAlAs QW-GRIN structures studied by photocurrent spectroscopy
GaAs/GaAlAs quantum well (QW) structures for graded index (GRIN) near IR injection lasers have been studied by polarization dependent photocurrent spectroscopy in the spectral region of QW transitions and in a wide range of temperatures 20 K
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信