x线血管造影检查狭窄的注意机制评价

Emmanuel Ovalle-Magallanes, Dora E. Alvarado-Carrillo, J. Aviña-Cervantes, I. Cruz-Aceves, J. Ruiz-Pinales, J. Contreras-Hernandez
{"title":"x线血管造影检查狭窄的注意机制评价","authors":"Emmanuel Ovalle-Magallanes, Dora E. Alvarado-Carrillo, J. Aviña-Cervantes, I. Cruz-Aceves, J. Ruiz-Pinales, J. Contreras-Hernandez","doi":"10.15377/2409-5761.2022.09.5","DOIUrl":null,"url":null,"abstract":"Coronary stenosis results from unnatural narrowing of the heart arteries due to the accumulation of adipose depots, leading to different heart diseases and yielding top mortality worldwide. Thus far, deep learning-based methods for automatic stenosis over X-ray Coronary Angiography (XCA) have employed state-of-the-art architectures to solve the ImageNet challenge. With the advance of deep learning, contemporary architectures incorporated a variety of attention mechanisms to improve performance. Therefore, this paper presents a study of three attention mechanisms for stenosis detection in XCA images. Extensive experiments and comparisons over different Residual backbone networks are presented to verify the effectiveness of including such attention modules. An improvement of 4%, 10%, and 10% on the accuracy, recall, and F1-score was achieved using the approach, reaching mean values of 0.8787, 0.8610, and 0.8732, respectively.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attention Mechanisms Evaluated on Stenosis Detection using X-ray Angiography Images\",\"authors\":\"Emmanuel Ovalle-Magallanes, Dora E. Alvarado-Carrillo, J. Aviña-Cervantes, I. Cruz-Aceves, J. Ruiz-Pinales, J. Contreras-Hernandez\",\"doi\":\"10.15377/2409-5761.2022.09.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronary stenosis results from unnatural narrowing of the heart arteries due to the accumulation of adipose depots, leading to different heart diseases and yielding top mortality worldwide. Thus far, deep learning-based methods for automatic stenosis over X-ray Coronary Angiography (XCA) have employed state-of-the-art architectures to solve the ImageNet challenge. With the advance of deep learning, contemporary architectures incorporated a variety of attention mechanisms to improve performance. Therefore, this paper presents a study of three attention mechanisms for stenosis detection in XCA images. Extensive experiments and comparisons over different Residual backbone networks are presented to verify the effectiveness of including such attention modules. An improvement of 4%, 10%, and 10% on the accuracy, recall, and F1-score was achieved using the approach, reaching mean values of 0.8787, 0.8610, and 0.8732, respectively.\",\"PeriodicalId\":335387,\"journal\":{\"name\":\"Journal of Advances in Applied & Computational Mathematics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Applied & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15377/2409-5761.2022.09.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

冠状动脉狭窄是由脂肪堆积引起的心脏动脉非自然变窄造成的,导致不同的心脏病,是全世界死亡率最高的疾病。到目前为止,基于深度学习的x射线冠状动脉造影(XCA)自动狭窄方法已经采用了最先进的架构来解决ImageNet的挑战。随着深度学习的进步,当代架构结合了各种注意力机制来提高性能。因此,本文对XCA图像中狭窄检测的三种注意机制进行了研究。在不同的残余骨干网上进行了大量的实验和比较,以验证包含这些关注模块的有效性。使用该方法,准确率、召回率和f1得分分别提高了4%、10%和10%,分别达到了0.8787、0.8610和0.8732的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Mechanisms Evaluated on Stenosis Detection using X-ray Angiography Images
Coronary stenosis results from unnatural narrowing of the heart arteries due to the accumulation of adipose depots, leading to different heart diseases and yielding top mortality worldwide. Thus far, deep learning-based methods for automatic stenosis over X-ray Coronary Angiography (XCA) have employed state-of-the-art architectures to solve the ImageNet challenge. With the advance of deep learning, contemporary architectures incorporated a variety of attention mechanisms to improve performance. Therefore, this paper presents a study of three attention mechanisms for stenosis detection in XCA images. Extensive experiments and comparisons over different Residual backbone networks are presented to verify the effectiveness of including such attention modules. An improvement of 4%, 10%, and 10% on the accuracy, recall, and F1-score was achieved using the approach, reaching mean values of 0.8787, 0.8610, and 0.8732, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信