基于突变的移动Ad-hoc网络混合路由算法

Wilson Musyoka, Andrew Omala, C. Katila
{"title":"基于突变的移动Ad-hoc网络混合路由算法","authors":"Wilson Musyoka, Andrew Omala, C. Katila","doi":"10.24203/ijcit.v11i4.234","DOIUrl":null,"url":null,"abstract":"Mobile Adhoc NETworks (MANETs) usually present challenges such as a highly dynamic topology due to node mobility, route rediscovery process, and packet loss. This leads to low throughput, a lot of energy consumption, delay and low packet delivery ratio. In order to ensure that the route is not rediscovered over and over, multipath routing protocols such as Adhoc Multipath Distance Vector (AOMDV) is used in order to utilize the alternate routes. However, nodes that have low residual energy can die and add to the problem of disconnection of network and route rediscovery. This paper proposes a multipath routing algorithm based on AOMDV and genetic mutation. It takes into account residual energy, hop count, congestion and received signal strength for primary route selection. For secondary path selection it uses residual energy, hop count, congestion and received signal strength together with mutation. The simulation results show that the proposed algorithm gives better performance results compared to AOMDV by 11% for residual energy, 45% throughput, 3% packet delivery ratio, and 63% less delay.","PeriodicalId":359510,"journal":{"name":"International Journal of Computer and Information Technology(2279-0764)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mutation Based Hybrid Routing Algorithm for Mobile Ad-hoc Networks\",\"authors\":\"Wilson Musyoka, Andrew Omala, C. Katila\",\"doi\":\"10.24203/ijcit.v11i4.234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Adhoc NETworks (MANETs) usually present challenges such as a highly dynamic topology due to node mobility, route rediscovery process, and packet loss. This leads to low throughput, a lot of energy consumption, delay and low packet delivery ratio. In order to ensure that the route is not rediscovered over and over, multipath routing protocols such as Adhoc Multipath Distance Vector (AOMDV) is used in order to utilize the alternate routes. However, nodes that have low residual energy can die and add to the problem of disconnection of network and route rediscovery. This paper proposes a multipath routing algorithm based on AOMDV and genetic mutation. It takes into account residual energy, hop count, congestion and received signal strength for primary route selection. For secondary path selection it uses residual energy, hop count, congestion and received signal strength together with mutation. The simulation results show that the proposed algorithm gives better performance results compared to AOMDV by 11% for residual energy, 45% throughput, 3% packet delivery ratio, and 63% less delay.\",\"PeriodicalId\":359510,\"journal\":{\"name\":\"International Journal of Computer and Information Technology(2279-0764)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer and Information Technology(2279-0764)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24203/ijcit.v11i4.234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Information Technology(2279-0764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ijcit.v11i4.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

移动自组织网络(manet)通常面临一些挑战,如由于节点移动性、路由重新发现过程和数据包丢失而导致的高度动态拓扑。这导致了低吞吐量,大量的能量消耗,延迟和低数据包传输率。为了确保路由不会被反复发现,为了利用备用路由,使用了多路径路由协议,如Adhoc多路径距离矢量(AOMDV)。然而,剩余能量低的节点可能会死亡,并增加网络断开和路由重新发现的问题。提出了一种基于AOMDV和基因突变的多路径路由算法。该算法综合考虑了剩余能量、跳数、拥塞和接收信号强度等因素进行主路选择。它利用剩余能量、跳数、拥塞和接收信号强度以及突变进行二次路径选择。仿真结果表明,与AOMDV相比,该算法的剩余能量提高了11%,吞吐量提高了45%,分组传送率提高了3%,延迟降低了63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutation Based Hybrid Routing Algorithm for Mobile Ad-hoc Networks
Mobile Adhoc NETworks (MANETs) usually present challenges such as a highly dynamic topology due to node mobility, route rediscovery process, and packet loss. This leads to low throughput, a lot of energy consumption, delay and low packet delivery ratio. In order to ensure that the route is not rediscovered over and over, multipath routing protocols such as Adhoc Multipath Distance Vector (AOMDV) is used in order to utilize the alternate routes. However, nodes that have low residual energy can die and add to the problem of disconnection of network and route rediscovery. This paper proposes a multipath routing algorithm based on AOMDV and genetic mutation. It takes into account residual energy, hop count, congestion and received signal strength for primary route selection. For secondary path selection it uses residual energy, hop count, congestion and received signal strength together with mutation. The simulation results show that the proposed algorithm gives better performance results compared to AOMDV by 11% for residual energy, 45% throughput, 3% packet delivery ratio, and 63% less delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信