电动飞机推进

A. Kozakiewicz, T. Grzegorczyk
{"title":"电动飞机推进","authors":"A. Kozakiewicz, T. Grzegorczyk","doi":"10.2478/jok-2021-0044","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the state of the art in electric aircraft propulsion systems. The necessary reduction of greenhouse gas emissions on the global scale forces aviation engineers to search for ‘green’ solutions. Electric aircraft propulsion is a potential and relatively intuitive choice for a reduction of emissions in flight operations. This paper showcases four architectures of aircraft propulsion systems being now considered to utilise the advantages of electric propulsion with commercially profitable operating range and payload capabilities. One of the largest technological obstacles to the widespread use of electric propulsion in aviation is the low energy density of modern electric batteries. This paper presents the types of power supply which may achieve an energy density above the minimum threshold of 500 Wh/kg, and alternative onboard electrical power sources. The paper also shows novel designs of electric motors intended for aerospace applications. The final sections of this paper shows the implemented projects of aircraft with electric propulsion and the electric aircraft propulsion research projects underway around the world.","PeriodicalId":342247,"journal":{"name":"Journal of KONBiN","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electric Aircraft Propulsion\",\"authors\":\"A. Kozakiewicz, T. Grzegorczyk\",\"doi\":\"10.2478/jok-2021-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents the state of the art in electric aircraft propulsion systems. The necessary reduction of greenhouse gas emissions on the global scale forces aviation engineers to search for ‘green’ solutions. Electric aircraft propulsion is a potential and relatively intuitive choice for a reduction of emissions in flight operations. This paper showcases four architectures of aircraft propulsion systems being now considered to utilise the advantages of electric propulsion with commercially profitable operating range and payload capabilities. One of the largest technological obstacles to the widespread use of electric propulsion in aviation is the low energy density of modern electric batteries. This paper presents the types of power supply which may achieve an energy density above the minimum threshold of 500 Wh/kg, and alternative onboard electrical power sources. The paper also shows novel designs of electric motors intended for aerospace applications. The final sections of this paper shows the implemented projects of aircraft with electric propulsion and the electric aircraft propulsion research projects underway around the world.\",\"PeriodicalId\":342247,\"journal\":{\"name\":\"Journal of KONBiN\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of KONBiN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jok-2021-0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of KONBiN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jok-2021-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文介绍了电动飞机推进系统的研究现状。在全球范围内减少温室气体排放的必要性迫使航空工程师寻找“绿色”解决方案。电动飞机推进是一种潜在的、相对直观的选择,可以减少飞行操作中的排放。本文展示了飞机推进系统的四种架构,目前正在考虑利用电力推进的优势,具有商业上有利可图的操作范围和有效载荷能力。在航空领域广泛应用电力推进的最大技术障碍之一是现代电池的低能量密度。本文介绍了可以实现能量密度超过500wh /kg最小阈值的电源类型,以及替代车载电源。本文还展示了用于航空航天应用的电动机的新设计。本文的最后部分展示了电动飞机推进的实施项目和世界上正在进行的电动飞机推进研究项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric Aircraft Propulsion
Abstract This paper presents the state of the art in electric aircraft propulsion systems. The necessary reduction of greenhouse gas emissions on the global scale forces aviation engineers to search for ‘green’ solutions. Electric aircraft propulsion is a potential and relatively intuitive choice for a reduction of emissions in flight operations. This paper showcases four architectures of aircraft propulsion systems being now considered to utilise the advantages of electric propulsion with commercially profitable operating range and payload capabilities. One of the largest technological obstacles to the widespread use of electric propulsion in aviation is the low energy density of modern electric batteries. This paper presents the types of power supply which may achieve an energy density above the minimum threshold of 500 Wh/kg, and alternative onboard electrical power sources. The paper also shows novel designs of electric motors intended for aerospace applications. The final sections of this paper shows the implemented projects of aircraft with electric propulsion and the electric aircraft propulsion research projects underway around the world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信