刀具旋转对电化学微加工微刀具加工的影响

Abhinav Kumar, H. Yadav, Manjesh Kumar, M. Das
{"title":"刀具旋转对电化学微加工微刀具加工的影响","authors":"Abhinav Kumar, H. Yadav, Manjesh Kumar, M. Das","doi":"10.1177/25165984211031687","DOIUrl":null,"url":null,"abstract":"Electrochemical micromachining (EMM) uses anodic dissolution in the range of microns to remove material. Complex shapes that are difficult to machine on hard materials can be fabricated easily with the help of EMM without any stresses on the workpiece surface and no tool wear. Fabrication of microfeatures on microdevices is a critical issue in modern technologies. For the fabrication of microfeatures, precise micro-tools have to be fabricated. In this present study, EMM milling is used for the fabrication of micro-tools. For this, an EMM setup has been designed. Tungsten carbide tools with an initial diameter of 520 µm have been selected and are electrochemically machined to reduce their diameter. The tool and workpiece are connected as anode and cathode, respectively. The electrolyte solution used for this investigation is sodium nitrate. A comparative analysis of the effect of tool rotation over both machining accuracy and surface finish has been performed.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of tool rotation on the fabrication of micro-tool by electrochemical micromachining\",\"authors\":\"Abhinav Kumar, H. Yadav, Manjesh Kumar, M. Das\",\"doi\":\"10.1177/25165984211031687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical micromachining (EMM) uses anodic dissolution in the range of microns to remove material. Complex shapes that are difficult to machine on hard materials can be fabricated easily with the help of EMM without any stresses on the workpiece surface and no tool wear. Fabrication of microfeatures on microdevices is a critical issue in modern technologies. For the fabrication of microfeatures, precise micro-tools have to be fabricated. In this present study, EMM milling is used for the fabrication of micro-tools. For this, an EMM setup has been designed. Tungsten carbide tools with an initial diameter of 520 µm have been selected and are electrochemically machined to reduce their diameter. The tool and workpiece are connected as anode and cathode, respectively. The electrolyte solution used for this investigation is sodium nitrate. A comparative analysis of the effect of tool rotation over both machining accuracy and surface finish has been performed.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25165984211031687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984211031687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电化学微加工(EMM)利用微米范围内的阳极溶解去除材料。在硬材料上难以加工的复杂形状可以在EMM的帮助下轻松制造,工件表面没有任何应力,也没有刀具磨损。在微器件上制备微特征是现代技术中的一个关键问题。为了制造微特征,必须制造精密的微工具。在本研究中,EMM铣削被用于微型刀具的制造。为此,设计了一个EMM设置。选择初始直径为520 μ m的碳化钨刀具,并进行电化学加工以减小其直径。刀具和工件分别作为阳极和阴极连接。本研究使用的电解质溶液为硝酸钠。对比分析了刀具旋转对加工精度和表面光洁度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of tool rotation on the fabrication of micro-tool by electrochemical micromachining
Electrochemical micromachining (EMM) uses anodic dissolution in the range of microns to remove material. Complex shapes that are difficult to machine on hard materials can be fabricated easily with the help of EMM without any stresses on the workpiece surface and no tool wear. Fabrication of microfeatures on microdevices is a critical issue in modern technologies. For the fabrication of microfeatures, precise micro-tools have to be fabricated. In this present study, EMM milling is used for the fabrication of micro-tools. For this, an EMM setup has been designed. Tungsten carbide tools with an initial diameter of 520 µm have been selected and are electrochemically machined to reduce their diameter. The tool and workpiece are connected as anode and cathode, respectively. The electrolyte solution used for this investigation is sodium nitrate. A comparative analysis of the effect of tool rotation over both machining accuracy and surface finish has been performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信