基于数学形态学的周期性检测语言摘要

Gilles Moyse, Marie-Jeanne Lesot, B. Bouchon-Meunier
{"title":"基于数学形态学的周期性检测语言摘要","authors":"Gilles Moyse, Marie-Jeanne Lesot, B. Bouchon-Meunier","doi":"10.1109/FOCI.2013.6602462","DOIUrl":null,"url":null,"abstract":"The paper presents a methodology to evaluate the periodicity of a temporal data series, neither relying on assumption about the series form nor requiring expert knowledge to set parameters. It exploits tools from mathematical morphology to compute a periodicity degree and a candidate period, as well as the fuzzy set theory to generate a natural language sentence, improving the result interpretability. Experiments on both artificial and real data illustrate the relevance of the proposed approach.","PeriodicalId":237129,"journal":{"name":"2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Linguistic summaries for periodicity detection based on mathematical morphology\",\"authors\":\"Gilles Moyse, Marie-Jeanne Lesot, B. Bouchon-Meunier\",\"doi\":\"10.1109/FOCI.2013.6602462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a methodology to evaluate the periodicity of a temporal data series, neither relying on assumption about the series form nor requiring expert knowledge to set parameters. It exploits tools from mathematical morphology to compute a periodicity degree and a candidate period, as well as the fuzzy set theory to generate a natural language sentence, improving the result interpretability. Experiments on both artificial and real data illustrate the relevance of the proposed approach.\",\"PeriodicalId\":237129,\"journal\":{\"name\":\"2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCI.2013.6602462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCI.2013.6602462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提出了一种评估时间数据序列周期性的方法,既不依赖于序列形式的假设,也不需要专家知识来设置参数。它利用数学形态学的工具来计算周期度和候选周期,并利用模糊集理论来生成自然语言句子,提高了结果的可解释性。在人工数据和真实数据上的实验表明了所提出方法的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linguistic summaries for periodicity detection based on mathematical morphology
The paper presents a methodology to evaluate the periodicity of a temporal data series, neither relying on assumption about the series form nor requiring expert knowledge to set parameters. It exploits tools from mathematical morphology to compute a periodicity degree and a candidate period, as well as the fuzzy set theory to generate a natural language sentence, improving the result interpretability. Experiments on both artificial and real data illustrate the relevance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信