{"title":"显微组织和合金掺杂对无铅焊料互连电迁移的影响","authors":"Minhua Lu","doi":"10.1109/IIRW.2013.6804192","DOIUrl":null,"url":null,"abstract":"Pb-free solders are studied for electromigration (EM) reliability. Two major EM failure mechanisms are identified in Sn-based Pb-free solders, due to the differences in microstructures and Sn-grain orientation. Rapid depletion of intermetallic-compounds and Under-Bump-Metallurgy are caused by fast diffusion of Cu and Ni along the c-axis of Sn crystals. When c-axis of Sn-grain is not aligned with the current direction, electromigration damage is dominated by Sn self-diffusion, which takes longer to occur. In general, the EM damage in SnCu solder is driven by the fast interstitial diffusion of Ni and Cu away from solder/UBM interface resulting in early fails; while the damage in SnAg solders is mostly dominated by Sn-self diffusion resulting in longer lifetime. The effective activation energy is 0.95 eV for SnAg solder and 0.54 eV for SnCu solder. The power exponent is 2 for SnAg and 1.2 for SnCu. Blech effect is observed only in the solders with Sn-self diffusion dominated failures, not in fast diffusion dominated failures. Therefore, optimizing and control solder microstructure is important to the solder reliability.","PeriodicalId":287904,"journal":{"name":"2013 IEEE International Integrated Reliability Workshop Final Report","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of microstructure and alloy doping on electromigration in Pb-free solder interconnect\",\"authors\":\"Minhua Lu\",\"doi\":\"10.1109/IIRW.2013.6804192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pb-free solders are studied for electromigration (EM) reliability. Two major EM failure mechanisms are identified in Sn-based Pb-free solders, due to the differences in microstructures and Sn-grain orientation. Rapid depletion of intermetallic-compounds and Under-Bump-Metallurgy are caused by fast diffusion of Cu and Ni along the c-axis of Sn crystals. When c-axis of Sn-grain is not aligned with the current direction, electromigration damage is dominated by Sn self-diffusion, which takes longer to occur. In general, the EM damage in SnCu solder is driven by the fast interstitial diffusion of Ni and Cu away from solder/UBM interface resulting in early fails; while the damage in SnAg solders is mostly dominated by Sn-self diffusion resulting in longer lifetime. The effective activation energy is 0.95 eV for SnAg solder and 0.54 eV for SnCu solder. The power exponent is 2 for SnAg and 1.2 for SnCu. Blech effect is observed only in the solders with Sn-self diffusion dominated failures, not in fast diffusion dominated failures. Therefore, optimizing and control solder microstructure is important to the solder reliability.\",\"PeriodicalId\":287904,\"journal\":{\"name\":\"2013 IEEE International Integrated Reliability Workshop Final Report\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Integrated Reliability Workshop Final Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIRW.2013.6804192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Integrated Reliability Workshop Final Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2013.6804192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of microstructure and alloy doping on electromigration in Pb-free solder interconnect
Pb-free solders are studied for electromigration (EM) reliability. Two major EM failure mechanisms are identified in Sn-based Pb-free solders, due to the differences in microstructures and Sn-grain orientation. Rapid depletion of intermetallic-compounds and Under-Bump-Metallurgy are caused by fast diffusion of Cu and Ni along the c-axis of Sn crystals. When c-axis of Sn-grain is not aligned with the current direction, electromigration damage is dominated by Sn self-diffusion, which takes longer to occur. In general, the EM damage in SnCu solder is driven by the fast interstitial diffusion of Ni and Cu away from solder/UBM interface resulting in early fails; while the damage in SnAg solders is mostly dominated by Sn-self diffusion resulting in longer lifetime. The effective activation energy is 0.95 eV for SnAg solder and 0.54 eV for SnCu solder. The power exponent is 2 for SnAg and 1.2 for SnCu. Blech effect is observed only in the solders with Sn-self diffusion dominated failures, not in fast diffusion dominated failures. Therefore, optimizing and control solder microstructure is important to the solder reliability.