{"title":"电磁发射器导轨和电枢的热应力分析","authors":"M. Ghassemi, M. Varmazyar","doi":"10.1109/elt.2008.92","DOIUrl":null,"url":null,"abstract":"In an electromagnetic launcher, the magnetic field creates a dynamic force that moves the armature forward. During the launch, electrical current creates high body forces and temperature distribution in the rails and the armature. As a result the rails and armature experience high amplitude stress and strain which damage the rails and the armature and reduces their life span. The purpose of this paper is to investigate the effect of body force as well as the temperature distribution on the displacement of the rails in an electromagnetic launcher. In this study the physical and geometrical properties of the rails are constant in location. In our formulation of governing non-linear differential equations, Maxwell, Energy equation and Navier equation are applied to the rails under dynamic loading. To solve the non-linear governing differential equations a finite difference base code is developed and utilized. It is shown that the Maximum volumetric forces take place where the highest magnetic field gradient occurs. In addition, the maximum magnetic force is accumulated at the trailing edge of the armature and portions of the rail interior. The thermal stresses distribution follows the same trend as displacement due to temperature behavior of the rails.","PeriodicalId":170049,"journal":{"name":"2008 14th Symposium on Electromagnetic Launch Technology","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermal Stresses Analysis of the Rails and the Armature of an Electromagnetic Launcher\",\"authors\":\"M. Ghassemi, M. Varmazyar\",\"doi\":\"10.1109/elt.2008.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an electromagnetic launcher, the magnetic field creates a dynamic force that moves the armature forward. During the launch, electrical current creates high body forces and temperature distribution in the rails and the armature. As a result the rails and armature experience high amplitude stress and strain which damage the rails and the armature and reduces their life span. The purpose of this paper is to investigate the effect of body force as well as the temperature distribution on the displacement of the rails in an electromagnetic launcher. In this study the physical and geometrical properties of the rails are constant in location. In our formulation of governing non-linear differential equations, Maxwell, Energy equation and Navier equation are applied to the rails under dynamic loading. To solve the non-linear governing differential equations a finite difference base code is developed and utilized. It is shown that the Maximum volumetric forces take place where the highest magnetic field gradient occurs. In addition, the maximum magnetic force is accumulated at the trailing edge of the armature and portions of the rail interior. The thermal stresses distribution follows the same trend as displacement due to temperature behavior of the rails.\",\"PeriodicalId\":170049,\"journal\":{\"name\":\"2008 14th Symposium on Electromagnetic Launch Technology\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 14th Symposium on Electromagnetic Launch Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/elt.2008.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 14th Symposium on Electromagnetic Launch Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/elt.2008.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Stresses Analysis of the Rails and the Armature of an Electromagnetic Launcher
In an electromagnetic launcher, the magnetic field creates a dynamic force that moves the armature forward. During the launch, electrical current creates high body forces and temperature distribution in the rails and the armature. As a result the rails and armature experience high amplitude stress and strain which damage the rails and the armature and reduces their life span. The purpose of this paper is to investigate the effect of body force as well as the temperature distribution on the displacement of the rails in an electromagnetic launcher. In this study the physical and geometrical properties of the rails are constant in location. In our formulation of governing non-linear differential equations, Maxwell, Energy equation and Navier equation are applied to the rails under dynamic loading. To solve the non-linear governing differential equations a finite difference base code is developed and utilized. It is shown that the Maximum volumetric forces take place where the highest magnetic field gradient occurs. In addition, the maximum magnetic force is accumulated at the trailing edge of the armature and portions of the rail interior. The thermal stresses distribution follows the same trend as displacement due to temperature behavior of the rails.