核扩展局部切线空间对准SAR图像分类

Xue-lian Yu
{"title":"核扩展局部切线空间对准SAR图像分类","authors":"Xue-lian Yu","doi":"10.23919/EURAD.2018.8546567","DOIUrl":null,"url":null,"abstract":"This study proposes a novel local tangent space alignment (LTSA) variant, kernel extended (KE)-LTSA for synthetic aperture radar (SAR) image classification. It attempts on one hand to extract local geometric structures embedded in local neighbourhoods and on the other hand to maximize global interclass separability characterized by the overall distances among different classes. Moreover, it is formulated with kernel technique to obtain better performance than linear counterparts. Experimental results on the MSTAR database demonstrate that the proposed method can significantly improve the classification performance. Results also indicate the robustness when taking into account target variability and neighbourhood size.","PeriodicalId":171460,"journal":{"name":"2018 15th European Radar Conference (EuRAD)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel Extended Local Tangent Space Alignment for SAR Image Classification\",\"authors\":\"Xue-lian Yu\",\"doi\":\"10.23919/EURAD.2018.8546567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a novel local tangent space alignment (LTSA) variant, kernel extended (KE)-LTSA for synthetic aperture radar (SAR) image classification. It attempts on one hand to extract local geometric structures embedded in local neighbourhoods and on the other hand to maximize global interclass separability characterized by the overall distances among different classes. Moreover, it is formulated with kernel technique to obtain better performance than linear counterparts. Experimental results on the MSTAR database demonstrate that the proposed method can significantly improve the classification performance. Results also indicate the robustness when taking into account target variability and neighbourhood size.\",\"PeriodicalId\":171460,\"journal\":{\"name\":\"2018 15th European Radar Conference (EuRAD)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th European Radar Conference (EuRAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EURAD.2018.8546567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EURAD.2018.8546567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的局部切线空间对准(LTSA)变体——核扩展(KE)-LTSA,用于合成孔径雷达(SAR)图像分类。它一方面试图提取嵌入在局部邻域中的局部几何结构,另一方面试图最大化以不同类别之间的总体距离为特征的全局类间可分离性。此外,该方法还采用了核技术,以获得比线性方法更好的性能。在MSTAR数据库上的实验结果表明,该方法可以显著提高分类性能。结果还表明,当考虑到目标可变性和邻居大小稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel Extended Local Tangent Space Alignment for SAR Image Classification
This study proposes a novel local tangent space alignment (LTSA) variant, kernel extended (KE)-LTSA for synthetic aperture radar (SAR) image classification. It attempts on one hand to extract local geometric structures embedded in local neighbourhoods and on the other hand to maximize global interclass separability characterized by the overall distances among different classes. Moreover, it is formulated with kernel technique to obtain better performance than linear counterparts. Experimental results on the MSTAR database demonstrate that the proposed method can significantly improve the classification performance. Results also indicate the robustness when taking into account target variability and neighbourhood size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信