Guofeng Chen, C. Cassella, Z. Qian, G. Hummel, M. Rinaldi
{"title":"具有260 MHz光刻调谐能力和高kt2 > 4%的氮化铝横截面lam<s:1>模式谐振器","authors":"Guofeng Chen, C. Cassella, Z. Qian, G. Hummel, M. Rinaldi","doi":"10.1109/FCS.2016.7563549","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrate Aluminum Nitride (AlN) cross-sectional Lamé mode resonators (CLMRs) operating in the microwave frequency range and showing high Qkt2 products (FoM) in excess of 85. Such feature enables low motional resistance (Rm) values (37 Ω) in CLMRs characterized by low static capacitance (Co) approaching 66 fF. In addition, the ability of CLMRs to simultaneously achieve high kt2 (> 4%) and a lithographic frequency tunability (> 260 MHz around 900 MHz) is experimentally demonstrated, for the first time, in this work. Such important feature renders CLMRs promising candidates to replace off-chip Surface Acoustic Wave (SAW) devices in lithographically defined filters for next-generation wireless communication platforms.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Aluminum Nitride cross-sectional Lamé mode resonators with 260 MHz lithographic tuning capability and high kt2 > 4%\",\"authors\":\"Guofeng Chen, C. Cassella, Z. Qian, G. Hummel, M. Rinaldi\",\"doi\":\"10.1109/FCS.2016.7563549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally demonstrate Aluminum Nitride (AlN) cross-sectional Lamé mode resonators (CLMRs) operating in the microwave frequency range and showing high Qkt2 products (FoM) in excess of 85. Such feature enables low motional resistance (Rm) values (37 Ω) in CLMRs characterized by low static capacitance (Co) approaching 66 fF. In addition, the ability of CLMRs to simultaneously achieve high kt2 (> 4%) and a lithographic frequency tunability (> 260 MHz around 900 MHz) is experimentally demonstrated, for the first time, in this work. Such important feature renders CLMRs promising candidates to replace off-chip Surface Acoustic Wave (SAW) devices in lithographically defined filters for next-generation wireless communication platforms.\",\"PeriodicalId\":122928,\"journal\":{\"name\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2016.7563549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7563549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aluminum Nitride cross-sectional Lamé mode resonators with 260 MHz lithographic tuning capability and high kt2 > 4%
We experimentally demonstrate Aluminum Nitride (AlN) cross-sectional Lamé mode resonators (CLMRs) operating in the microwave frequency range and showing high Qkt2 products (FoM) in excess of 85. Such feature enables low motional resistance (Rm) values (37 Ω) in CLMRs characterized by low static capacitance (Co) approaching 66 fF. In addition, the ability of CLMRs to simultaneously achieve high kt2 (> 4%) and a lithographic frequency tunability (> 260 MHz around 900 MHz) is experimentally demonstrated, for the first time, in this work. Such important feature renders CLMRs promising candidates to replace off-chip Surface Acoustic Wave (SAW) devices in lithographically defined filters for next-generation wireless communication platforms.