基于Kohonen多协议适配的物联网数据采集系统

Changhua Wang, Xiliang Zhang, Xihao Zhu, Hancheng Yu, Shuangjing Ni
{"title":"基于Kohonen多协议适配的物联网数据采集系统","authors":"Changhua Wang, Xiliang Zhang, Xihao Zhu, Hancheng Yu, Shuangjing Ni","doi":"10.1117/12.2652742","DOIUrl":null,"url":null,"abstract":"With the development of highway information, according to the actual demand of highway electromechanical equipment management, this paper designs a multi-protocol internet of things data acquisition system to realize instant messaging and data sharing of electromechanical equipment. The Kohonen neural network is used to train the adaptive module of the existing input protocol. According to the eigenvalues of the header, the shaping number of the end bytes and the length of a single packet of the protocol, the function of automatically selecting the appropriate protocol is realized. In the later stage, the ability to learn more protocol adaptation independently can be realized by updating the protocol knowledge base on the internet of things platform. The results show that the average processing time of Kohonen network for each protocol data is about 109ms, and the average recognition rate reaches 95.45%. Kohonen network can be applied in traffic engineering field and realize the conversion of various information data of electromechanical equipment with different protocols into unified information data through protocol conversion rules.","PeriodicalId":116712,"journal":{"name":"Frontiers of Traffic and Transportation Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data acquisition system of Internet of Things based on Kohonen multi-protocol adaptation\",\"authors\":\"Changhua Wang, Xiliang Zhang, Xihao Zhu, Hancheng Yu, Shuangjing Ni\",\"doi\":\"10.1117/12.2652742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of highway information, according to the actual demand of highway electromechanical equipment management, this paper designs a multi-protocol internet of things data acquisition system to realize instant messaging and data sharing of electromechanical equipment. The Kohonen neural network is used to train the adaptive module of the existing input protocol. According to the eigenvalues of the header, the shaping number of the end bytes and the length of a single packet of the protocol, the function of automatically selecting the appropriate protocol is realized. In the later stage, the ability to learn more protocol adaptation independently can be realized by updating the protocol knowledge base on the internet of things platform. The results show that the average processing time of Kohonen network for each protocol data is about 109ms, and the average recognition rate reaches 95.45%. Kohonen network can be applied in traffic engineering field and realize the conversion of various information data of electromechanical equipment with different protocols into unified information data through protocol conversion rules.\",\"PeriodicalId\":116712,\"journal\":{\"name\":\"Frontiers of Traffic and Transportation Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Traffic and Transportation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2652742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Traffic and Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2652742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着公路信息化的发展,根据公路机电设备管理的实际需求,本文设计了一个多协议物联网数据采集系统,实现了机电设备的即时通讯和数据共享。利用Kohonen神经网络对已有输入协议的自适应模块进行训练。根据协议的报头特征值、结束字节整形数和单包长度,实现了自动选择合适协议的功能。在后期,可以通过更新物联网平台上的协议知识库来实现自主学习更多协议适配的能力。结果表明,Kohonen网络对各协议数据的平均处理时间约为109ms,平均识别率达到95.45%。Kohonen网络可应用于交通工程领域,通过协议转换规则实现将不同协议的机电设备的各种信息数据转换为统一的信息数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data acquisition system of Internet of Things based on Kohonen multi-protocol adaptation
With the development of highway information, according to the actual demand of highway electromechanical equipment management, this paper designs a multi-protocol internet of things data acquisition system to realize instant messaging and data sharing of electromechanical equipment. The Kohonen neural network is used to train the adaptive module of the existing input protocol. According to the eigenvalues of the header, the shaping number of the end bytes and the length of a single packet of the protocol, the function of automatically selecting the appropriate protocol is realized. In the later stage, the ability to learn more protocol adaptation independently can be realized by updating the protocol knowledge base on the internet of things platform. The results show that the average processing time of Kohonen network for each protocol data is about 109ms, and the average recognition rate reaches 95.45%. Kohonen network can be applied in traffic engineering field and realize the conversion of various information data of electromechanical equipment with different protocols into unified information data through protocol conversion rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信