Till Fischer, C. Köllner, Manuel Hardle, K. Müller-Glaser
{"title":"基于模块化fpga的嵌入式系统产品线开发","authors":"Till Fischer, C. Köllner, Manuel Hardle, K. Müller-Glaser","doi":"10.1109/RSP.2014.6966686","DOIUrl":null,"url":null,"abstract":"Managing different variants and configurations of complex embedded systems consisting of multiple exchangeable hardware modules is a difficult task. This is in particular true when selecting a certain variant and configuration affects several aspects of development, deployment and operation. In this paper, we describe our approach for product line development of a highly flexible, modular embedded system, which can be assembled in many different ways. Each composition can be perceived as a prototype, because it requires a specific FPGA firmware, and offers different parameters changeable at runtime. A key component of our solution is a model-based description of possible variations. It enables automatic generation of source code as well as configuration files. Through this it is possible to provide new variants and configurations very fast and the response time to customer requests is improved. We outline how the model can be well-integrated with technologies and tools used for development, deployment and operation of the overall system. This involves run-time parametrization of the system and configuration of secondary tools using standard office documents, but the focus lies on the link between model and FPGA implementation (VHDL). We propose a powerful but still easy to understand template-based approach for this purpose.","PeriodicalId":394637,"journal":{"name":"2014 25nd IEEE International Symposium on Rapid System Prototyping","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Product line development for modular FPGA-based embedded systems\",\"authors\":\"Till Fischer, C. Köllner, Manuel Hardle, K. Müller-Glaser\",\"doi\":\"10.1109/RSP.2014.6966686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing different variants and configurations of complex embedded systems consisting of multiple exchangeable hardware modules is a difficult task. This is in particular true when selecting a certain variant and configuration affects several aspects of development, deployment and operation. In this paper, we describe our approach for product line development of a highly flexible, modular embedded system, which can be assembled in many different ways. Each composition can be perceived as a prototype, because it requires a specific FPGA firmware, and offers different parameters changeable at runtime. A key component of our solution is a model-based description of possible variations. It enables automatic generation of source code as well as configuration files. Through this it is possible to provide new variants and configurations very fast and the response time to customer requests is improved. We outline how the model can be well-integrated with technologies and tools used for development, deployment and operation of the overall system. This involves run-time parametrization of the system and configuration of secondary tools using standard office documents, but the focus lies on the link between model and FPGA implementation (VHDL). We propose a powerful but still easy to understand template-based approach for this purpose.\",\"PeriodicalId\":394637,\"journal\":{\"name\":\"2014 25nd IEEE International Symposium on Rapid System Prototyping\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 25nd IEEE International Symposium on Rapid System Prototyping\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSP.2014.6966686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25nd IEEE International Symposium on Rapid System Prototyping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP.2014.6966686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Product line development for modular FPGA-based embedded systems
Managing different variants and configurations of complex embedded systems consisting of multiple exchangeable hardware modules is a difficult task. This is in particular true when selecting a certain variant and configuration affects several aspects of development, deployment and operation. In this paper, we describe our approach for product line development of a highly flexible, modular embedded system, which can be assembled in many different ways. Each composition can be perceived as a prototype, because it requires a specific FPGA firmware, and offers different parameters changeable at runtime. A key component of our solution is a model-based description of possible variations. It enables automatic generation of source code as well as configuration files. Through this it is possible to provide new variants and configurations very fast and the response time to customer requests is improved. We outline how the model can be well-integrated with technologies and tools used for development, deployment and operation of the overall system. This involves run-time parametrization of the system and configuration of secondary tools using standard office documents, but the focus lies on the link between model and FPGA implementation (VHDL). We propose a powerful but still easy to understand template-based approach for this purpose.