E. Peña-Tapia, Ryo Hachiuma, Antoine Pasquali, H. Saito
{"title":"LCR-SMPL:从单个RGB图像走向实时人体检测和三维重建","authors":"E. Peña-Tapia, Ryo Hachiuma, Antoine Pasquali, H. Saito","doi":"10.1109/ISMAR-Adjunct51615.2020.00062","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for simultaneous human detection and 3D shape reconstruction from a single RGB image. It offers a low-cost alternative to existing motion capture solutions, allowing to reconstruct realistic human 3D shapes and poses by leveraging the speed of an object-detection based architecture and the extended applicability of a parametric human mesh model. Evaluation results using a synthetic dataset show that our approach is on-par with conventional 3D reconstruction methods in terms of accuracy, and outperforms them in terms of inference speed, particularly in the case of multi-person images.","PeriodicalId":433361,"journal":{"name":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LCR-SMPL: Toward Real-time Human Detection and 3D Reconstruction from a Single RGB Image\",\"authors\":\"E. Peña-Tapia, Ryo Hachiuma, Antoine Pasquali, H. Saito\",\"doi\":\"10.1109/ISMAR-Adjunct51615.2020.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for simultaneous human detection and 3D shape reconstruction from a single RGB image. It offers a low-cost alternative to existing motion capture solutions, allowing to reconstruct realistic human 3D shapes and poses by leveraging the speed of an object-detection based architecture and the extended applicability of a parametric human mesh model. Evaluation results using a synthetic dataset show that our approach is on-par with conventional 3D reconstruction methods in terms of accuracy, and outperforms them in terms of inference speed, particularly in the case of multi-person images.\",\"PeriodicalId\":433361,\"journal\":{\"name\":\"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LCR-SMPL: Toward Real-time Human Detection and 3D Reconstruction from a Single RGB Image
This paper presents a novel method for simultaneous human detection and 3D shape reconstruction from a single RGB image. It offers a low-cost alternative to existing motion capture solutions, allowing to reconstruct realistic human 3D shapes and poses by leveraging the speed of an object-detection based architecture and the extended applicability of a parametric human mesh model. Evaluation results using a synthetic dataset show that our approach is on-par with conventional 3D reconstruction methods in terms of accuracy, and outperforms them in terms of inference speed, particularly in the case of multi-person images.