投入不确定性下的排序与选择:一个预算分配公式

Di Wu, Enlu Zhou
{"title":"投入不确定性下的排序与选择:一个预算分配公式","authors":"Di Wu, Enlu Zhou","doi":"10.1109/WSC.2017.8247956","DOIUrl":null,"url":null,"abstract":"A widely acknowledged challenge in ranking and selection is how to allocate the simulation budget such that the probability of correction selection (PCS) is maximized. However, there is yet another challenge: when the input distributions are estimated using finite real-world data, simulation output is subject to input uncertainty and we may fail to identify the best system even using infinite simulation budget. We propose a new formulation that captures the tradeoff between collecting input data and running simulations. To solve the formulation, we develop an algorithm for two-stage allocation of finite budget. We use numerical experiment to demonstrate the performance of our algorithm.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Ranking and selection under input uncertainty: A budget allocation formulation\",\"authors\":\"Di Wu, Enlu Zhou\",\"doi\":\"10.1109/WSC.2017.8247956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A widely acknowledged challenge in ranking and selection is how to allocate the simulation budget such that the probability of correction selection (PCS) is maximized. However, there is yet another challenge: when the input distributions are estimated using finite real-world data, simulation output is subject to input uncertainty and we may fail to identify the best system even using infinite simulation budget. We propose a new formulation that captures the tradeoff between collecting input data and running simulations. To solve the formulation, we develop an algorithm for two-stage allocation of finite budget. We use numerical experiment to demonstrate the performance of our algorithm.\",\"PeriodicalId\":145780,\"journal\":{\"name\":\"2017 Winter Simulation Conference (WSC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2017.8247956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

如何分配仿真预算以使修正选择(PCS)的概率最大化是排序和选择中一个公认的挑战。然而,还有另一个挑战:当使用有限的真实数据估计输入分布时,模拟输出受输入不确定性的影响,即使使用无限的模拟预算,我们也可能无法确定最佳系统。我们提出了一种新的公式,可以在收集输入数据和运行模拟之间进行权衡。为了解决这个问题,我们提出了一个有限预算的两阶段分配算法。通过数值实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ranking and selection under input uncertainty: A budget allocation formulation
A widely acknowledged challenge in ranking and selection is how to allocate the simulation budget such that the probability of correction selection (PCS) is maximized. However, there is yet another challenge: when the input distributions are estimated using finite real-world data, simulation output is subject to input uncertainty and we may fail to identify the best system even using infinite simulation budget. We propose a new formulation that captures the tradeoff between collecting input data and running simulations. To solve the formulation, we develop an algorithm for two-stage allocation of finite budget. We use numerical experiment to demonstrate the performance of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信