{"title":"最优控制问题的进化算法与梯度方法的比较","authors":"A. Diveev, S. Konstantinov, E. Sofronova","doi":"10.1109/CoDIT.2018.8394805","DOIUrl":null,"url":null,"abstract":"An experimental comparison of evolutionary algorithms and gradient-based methods for the optimal control problem is carried out. The problem is solved separately by Particle swarm optimization, Grey wolf optimizer, Fast gradient descent method, Marquardt method and Adam method. The simulation is performed on a jet aircraft model. The results of each algorithm performance are compared according to the best found value of the fitness function, the mean value and the standard deviation.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comparison of Evolutionary Algorithms and Gradient-based Methods for the Optimal Control Problem\",\"authors\":\"A. Diveev, S. Konstantinov, E. Sofronova\",\"doi\":\"10.1109/CoDIT.2018.8394805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental comparison of evolutionary algorithms and gradient-based methods for the optimal control problem is carried out. The problem is solved separately by Particle swarm optimization, Grey wolf optimizer, Fast gradient descent method, Marquardt method and Adam method. The simulation is performed on a jet aircraft model. The results of each algorithm performance are compared according to the best found value of the fitness function, the mean value and the standard deviation.\",\"PeriodicalId\":128011,\"journal\":{\"name\":\"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT.2018.8394805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of Evolutionary Algorithms and Gradient-based Methods for the Optimal Control Problem
An experimental comparison of evolutionary algorithms and gradient-based methods for the optimal control problem is carried out. The problem is solved separately by Particle swarm optimization, Grey wolf optimizer, Fast gradient descent method, Marquardt method and Adam method. The simulation is performed on a jet aircraft model. The results of each algorithm performance are compared according to the best found value of the fitness function, the mean value and the standard deviation.