使用视觉和力量信息进行个性化敷料辅助的迭代路径优化

Yixing Gao, H. Chang, Y. Demiris
{"title":"使用视觉和力量信息进行个性化敷料辅助的迭代路径优化","authors":"Yixing Gao, H. Chang, Y. Demiris","doi":"10.1109/IROS.2016.7759647","DOIUrl":null,"url":null,"abstract":"We propose an online iterative path optimisation method to enable a Baxter humanoid robot to assist human users to dress. The robot searches for the optimal personalised dressing path using vision and force sensor information: vision information is used to recognise the human pose and model the movement space of upper-body joints; force sensor information is used for the robot to detect external force resistance and to locally adjust its motion. We propose a new stochastic path optimisation method based on adaptive moment estimation. We first compare the proposed method with other path optimisation algorithms on synthetic data. Experimental results show that the performance of the method achieves the smallest error with fewer iterations and less computation time. We also evaluate real-world data by enabling the Baxter robot to assist real human users with their dressing.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Iterative path optimisation for personalised dressing assistance using vision and force information\",\"authors\":\"Yixing Gao, H. Chang, Y. Demiris\",\"doi\":\"10.1109/IROS.2016.7759647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an online iterative path optimisation method to enable a Baxter humanoid robot to assist human users to dress. The robot searches for the optimal personalised dressing path using vision and force sensor information: vision information is used to recognise the human pose and model the movement space of upper-body joints; force sensor information is used for the robot to detect external force resistance and to locally adjust its motion. We propose a new stochastic path optimisation method based on adaptive moment estimation. We first compare the proposed method with other path optimisation algorithms on synthetic data. Experimental results show that the performance of the method achieves the smallest error with fewer iterations and less computation time. We also evaluate real-world data by enabling the Baxter robot to assist real human users with their dressing.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

我们提出了一种在线迭代路径优化方法,使百特人形机器人能够帮助人类用户穿衣服。机器人利用视觉和力传感器信息搜索最优的个性化穿衣路径:利用视觉信息识别人体姿态,建立上肢关节运动空间模型;机器人利用力传感器信息检测外力阻力,并对其运动进行局部调整。提出了一种基于自适应矩估计的随机路径优化方法。我们首先将所提出的方法与其他路径优化算法在合成数据上进行比较。实验结果表明,该方法能够以较少的迭代次数和较少的计算时间实现最小的误差。我们还通过让百特机器人帮助真正的人类用户穿衣来评估真实世界的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative path optimisation for personalised dressing assistance using vision and force information
We propose an online iterative path optimisation method to enable a Baxter humanoid robot to assist human users to dress. The robot searches for the optimal personalised dressing path using vision and force sensor information: vision information is used to recognise the human pose and model the movement space of upper-body joints; force sensor information is used for the robot to detect external force resistance and to locally adjust its motion. We propose a new stochastic path optimisation method based on adaptive moment estimation. We first compare the proposed method with other path optimisation algorithms on synthetic data. Experimental results show that the performance of the method achieves the smallest error with fewer iterations and less computation time. We also evaluate real-world data by enabling the Baxter robot to assist real human users with their dressing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信