K. Kurokawa, K. Kato, M. Ito, K. Komoto, T. Kichimi, H. Sugihara
{"title":"世界沙漠超大规模光伏(VLS-PV)系统成本分析","authors":"K. Kurokawa, K. Kato, M. Ito, K. Komoto, T. Kichimi, H. Sugihara","doi":"10.1109/PVSC.2002.1190939","DOIUrl":null,"url":null,"abstract":"To preserve the Earth, a 100 MW very large-scale photovoltaic power generation (VLS-PV) system is estimated assuming that it is installed on the world deserts, which are Sahara, Negev, Thar, Sonora, Great Sandy and Gobi desert. These deserts are good for installing the system because of large solar irradiation and large land area. A PV array is dimensioned in detail in terms of array layout, support, foundation, wiring and so on. Then generation cost of the system is estimated based on the methodology of life-cycle cost (LCC). As a result of the estimation, the generation cost is calculated as 5.3 cent/kWh on Sahara desert, 6.4 cent/kWh on Gobi desert assuming PV module price of $1.0/W, system lifetime of 30 years and interest rate of 3%. These results suggest that VLS-PV systems are economically feasible on sufficient irradiation site even if existing PV system technologies are applied, when PV module price will decrease to a level of $1.0/W.","PeriodicalId":177538,"journal":{"name":"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A cost analysis of very large scale PV (VLS-PV) system on the world deserts\",\"authors\":\"K. Kurokawa, K. Kato, M. Ito, K. Komoto, T. Kichimi, H. Sugihara\",\"doi\":\"10.1109/PVSC.2002.1190939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To preserve the Earth, a 100 MW very large-scale photovoltaic power generation (VLS-PV) system is estimated assuming that it is installed on the world deserts, which are Sahara, Negev, Thar, Sonora, Great Sandy and Gobi desert. These deserts are good for installing the system because of large solar irradiation and large land area. A PV array is dimensioned in detail in terms of array layout, support, foundation, wiring and so on. Then generation cost of the system is estimated based on the methodology of life-cycle cost (LCC). As a result of the estimation, the generation cost is calculated as 5.3 cent/kWh on Sahara desert, 6.4 cent/kWh on Gobi desert assuming PV module price of $1.0/W, system lifetime of 30 years and interest rate of 3%. These results suggest that VLS-PV systems are economically feasible on sufficient irradiation site even if existing PV system technologies are applied, when PV module price will decrease to a level of $1.0/W.\",\"PeriodicalId\":177538,\"journal\":{\"name\":\"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2002.1190939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2002.1190939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cost analysis of very large scale PV (VLS-PV) system on the world deserts
To preserve the Earth, a 100 MW very large-scale photovoltaic power generation (VLS-PV) system is estimated assuming that it is installed on the world deserts, which are Sahara, Negev, Thar, Sonora, Great Sandy and Gobi desert. These deserts are good for installing the system because of large solar irradiation and large land area. A PV array is dimensioned in detail in terms of array layout, support, foundation, wiring and so on. Then generation cost of the system is estimated based on the methodology of life-cycle cost (LCC). As a result of the estimation, the generation cost is calculated as 5.3 cent/kWh on Sahara desert, 6.4 cent/kWh on Gobi desert assuming PV module price of $1.0/W, system lifetime of 30 years and interest rate of 3%. These results suggest that VLS-PV systems are economically feasible on sufficient irradiation site even if existing PV system technologies are applied, when PV module price will decrease to a level of $1.0/W.