分数阶耦合振荡器奇特图样的初步结果

C. Pinto
{"title":"分数阶耦合振荡器奇特图样的初步结果","authors":"C. Pinto","doi":"10.1109/AQTR.2014.6857905","DOIUrl":null,"url":null,"abstract":"We study peculiar dynamical patterns of a fractional derivative of complex-order network. The network consists of two rings of cells coupled through a `buffer' cell, with Z3 × Z5 symmetry group. Each cell is modeled by the Chen oscillator. Numerical simulations expose interesting dynamical features, such as equilibria, periodic solutions and relaxation oscillations, for distinct value of the real part of the fractional derivative of complex-order. Further work is needed to enhance our knowledge of the underlying dynamics of the network.","PeriodicalId":297141,"journal":{"name":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary results on peculiar patterns in fractional coupled oscillators\",\"authors\":\"C. Pinto\",\"doi\":\"10.1109/AQTR.2014.6857905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study peculiar dynamical patterns of a fractional derivative of complex-order network. The network consists of two rings of cells coupled through a `buffer' cell, with Z3 × Z5 symmetry group. Each cell is modeled by the Chen oscillator. Numerical simulations expose interesting dynamical features, such as equilibria, periodic solutions and relaxation oscillations, for distinct value of the real part of the fractional derivative of complex-order. Further work is needed to enhance our knowledge of the underlying dynamics of the network.\",\"PeriodicalId\":297141,\"journal\":{\"name\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Automation, Quality and Testing, Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2014.6857905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2014.6857905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了复阶网络分数阶导数的特殊动力学模式。该网络由两个环形单元组成,通过一个“缓冲”单元耦合,具有Z3 × Z5对称群。每个单元由Chen振荡器建模。数值模拟揭示了复阶分数阶导数实部不同值的有趣动力学特征,如平衡、周期解和弛豫振荡。需要进一步的工作来增强我们对网络潜在动力学的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary results on peculiar patterns in fractional coupled oscillators
We study peculiar dynamical patterns of a fractional derivative of complex-order network. The network consists of two rings of cells coupled through a `buffer' cell, with Z3 × Z5 symmetry group. Each cell is modeled by the Chen oscillator. Numerical simulations expose interesting dynamical features, such as equilibria, periodic solutions and relaxation oscillations, for distinct value of the real part of the fractional derivative of complex-order. Further work is needed to enhance our knowledge of the underlying dynamics of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信