索引生成函数线性分解的zdd精确优化方法

Shinobu Nagayama, Tsutomu Sasao, J. T. Butler
{"title":"索引生成函数线性分解的zdd精确优化方法","authors":"Shinobu Nagayama, Tsutomu Sasao, J. T. Butler","doi":"10.1109/ISMVL.2018.00033","DOIUrl":null,"url":null,"abstract":"This paper proposes an exact optimization method using zero-suppressed binary decision diagrams (ZDDs) for linear decomposition of index generation functions. The proposed method searches for an exact optimum solution by recursively dividing an index set of an index generation function. Since ZDDs can represent sets compactly and uniquely, they can also represent partitions of an index set compactly and uniquely. Thus, the proposed method can reuse partial solutions (partitions of an index set) efficiently by using ZDDs, and avoid redundant solution search. Experimental results using benchmark index generation functions show the effectiveness of ZDDs.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Exact Optimization Method Using ZDDs for Linear Decomposition of Index Generation Functions\",\"authors\":\"Shinobu Nagayama, Tsutomu Sasao, J. T. Butler\",\"doi\":\"10.1109/ISMVL.2018.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an exact optimization method using zero-suppressed binary decision diagrams (ZDDs) for linear decomposition of index generation functions. The proposed method searches for an exact optimum solution by recursively dividing an index set of an index generation function. Since ZDDs can represent sets compactly and uniquely, they can also represent partitions of an index set compactly and uniquely. Thus, the proposed method can reuse partial solutions (partitions of an index set) efficiently by using ZDDs, and avoid redundant solution search. Experimental results using benchmark index generation functions show the effectiveness of ZDDs.\",\"PeriodicalId\":434323,\"journal\":{\"name\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2018.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对索引生成函数的线性分解,提出了一种基于零抑制二元决策图(zdd)的精确优化方法。该方法通过递归划分索引生成函数的索引集来搜索精确最优解。由于zdd可以紧凑且唯一地表示集合,因此它们也可以紧凑且唯一地表示索引集的分区。因此,该方法可以通过使用zdd有效地重用部分解(索引集的分区),并且避免了冗余的解搜索。使用基准索引生成函数的实验结果表明了zdd的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exact Optimization Method Using ZDDs for Linear Decomposition of Index Generation Functions
This paper proposes an exact optimization method using zero-suppressed binary decision diagrams (ZDDs) for linear decomposition of index generation functions. The proposed method searches for an exact optimum solution by recursively dividing an index set of an index generation function. Since ZDDs can represent sets compactly and uniquely, they can also represent partitions of an index set compactly and uniquely. Thus, the proposed method can reuse partial solutions (partitions of an index set) efficiently by using ZDDs, and avoid redundant solution search. Experimental results using benchmark index generation functions show the effectiveness of ZDDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信