基于主题相似度的剪辑推荐

Wonjoo Park, Jeong-Woo Son, Sang-Yun Lee, Sun-Joong Kim
{"title":"基于主题相似度的剪辑推荐","authors":"Wonjoo Park, Jeong-Woo Son, Sang-Yun Lee, Sun-Joong Kim","doi":"10.23919/ICACT.2018.8323873","DOIUrl":null,"url":null,"abstract":"We propose a clip recommendation technology based on topic similarity. Topics of a clip can represent semantics of each contents. When the topic distributions for clips are similar, it means they are alike. In this paper, we propose a system to learn topic distributions for broadcast contents and link clips based on topics similarity of each clip. The higher the similarity is among the clips, the higher the semantic is among them. This system can be adopted clip recommendation with audiences viewing history and their interest.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clip recommendation based on topic similarity\",\"authors\":\"Wonjoo Park, Jeong-Woo Son, Sang-Yun Lee, Sun-Joong Kim\",\"doi\":\"10.23919/ICACT.2018.8323873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a clip recommendation technology based on topic similarity. Topics of a clip can represent semantics of each contents. When the topic distributions for clips are similar, it means they are alike. In this paper, we propose a system to learn topic distributions for broadcast contents and link clips based on topics similarity of each clip. The higher the similarity is among the clips, the higher the semantic is among them. This system can be adopted clip recommendation with audiences viewing history and their interest.\",\"PeriodicalId\":228625,\"journal\":{\"name\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT.2018.8323873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于主题相似度的视频片段推荐技术。一个片段的主题可以表示每个内容的语义。当剪辑的主题分布相似时,就意味着它们是相似的。在本文中,我们提出了一个基于每个片段的主题相似度来学习广播内容和链接片段的主题分布的系统。片段之间的相似度越高,片段之间的语义度越高。该系统可以根据观众的观看历史和兴趣进行视频推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clip recommendation based on topic similarity
We propose a clip recommendation technology based on topic similarity. Topics of a clip can represent semantics of each contents. When the topic distributions for clips are similar, it means they are alike. In this paper, we propose a system to learn topic distributions for broadcast contents and link clips based on topics similarity of each clip. The higher the similarity is among the clips, the higher the semantic is among them. This system can be adopted clip recommendation with audiences viewing history and their interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信